Министерство науки и высшего образования Российской Федерации Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский ядерный университет «МИФИ»

УДК 539.165.2

ОТЧЕТ О НАУЧНО-ИССЛЕДОВАТЕЛЬСКОЙ РАБОТЕ РАСЧЁТ КУМУЛЯТИВНЫХ СПЕКТРОВ БЕТА-ЧАСТИЦ И АНТИНЕЙТРИНО УРАНА И ПЛУТОНИЯ МЕТОДОМ ПРЯМОГО СУММИРОВАНИЯ

Научный руководитель ассистент кафедры №40

Л. В. Попов В. Н. Зайцев

Студент

Москва 2025

СОДЕРЖАНИЕ

Введение			3
1	Теоретическая часть		5
	1.1	Расчет вероятности β -распада	5
	1.2	Функция Ферми	6
	1.3	Построение суммарного спектра изотопа	8
	1.4	Построение кумулятивного спектра изотопа	9
	1.5	Реконструирование позитронного (β^+) спектра	9
2	2 Практическая часть		12
Зғ	Заключение		
C	Список использованных источников		

ВВЕДЕНИЕ

Основной теоретической моделью современной физики является Стандартная модель (СМ), описывающая электромагнитное, слабое и сильное взаимодействие всех элементарных частиц. Последним на данный момент значительным подтверждением СМ стало открытие бозона Хиггса на Большом адронном коллайдере в 2012 году, что завершило формирование современной СМ.

Тем не менее, предсказания этой теоретической модели имеют некоторых расхождения с экспериментальными наблюдениями. Например, согласно модели, нейтрино должны быть строго безмассовыми, в то время как верхняя экспериментальная оценка суммы масс всех типов нейтрино составляет порядка 0,28 эВ^[1]. Эта и некоторые другие проблемы нуждаются в решении для расширения СМ.

Существование нейтрино было предложено Паули еще в 1930 году, чтобы решить актуальную на тот момент проблему несохранения энергии и углового момента при ядерном β -распаде. Однако открытия нейтрино как частицы пришлось ждать до 1953-1959 годов, когда Фредерик Райнес и Клайд Коуэн ^{[2][3]} обнаружили электронное антинейтрино, испускаемое ядерным реактором. В реакторах в процессе их работы образуются β -радиоактивные изотопы, в результате распада которых эти частицы возникают в больших количествах. Этот фундаментальный эксперимент положил начало исследованию нейтрино с помощью реакторных антинейтрино.

В самом общем случае все источники нейтрино можно разделить на 3 группы:

- Космические нейтрино;
- Нейтрино от естественных источников на Земле, возникающие в процессах бета-распада радионуклидов;

• Нейтрино от искусственных источников, к ним относятся реакторные антинейтрино и ускорительные нейтрино.

В настоящий момент наиболее интенсивными источниками антинейтрино являются ядерные реакторы. Для реакторных антинейтрино характерны энергии до 10 МэВ^[4]. Их полный спектр формируется из парциальных спектров от всех распадающихся изотопов. При этом в связи с несовпадением теоретических и экспериментальных данных одной из основных проблем является формирование точной модели для расчета спектров.

Таким образом, актуальной задачей является развитие новой теоретической модели для расчета спектров бета-частиц и антинейтрино.

Цель данной работы заключается в определении и развитии теоретической модели, по которой можно построить спектр бета-частиц и антинейтрино продуктов деления изотопов в активной зоне реактора.

Задачи:

- Получить в первом приближении кумулятивные спектры бета-частиц и антинейтрино от основных изотопов, используемых как топливо для ядерных реакторов (²³⁵U, ²³⁸U, ²³⁹Pu, ²⁴¹Pu);
- Сравнить кумулятивные спектры, рассчитанные в простейшем приближении с экспериментальными спектрами и другими существующими моделями;
- Проанализировать возможные причины несоответствия модельных спектров с экспериментальными.

1. ТЕОРЕТИЧЕСКАЯ ЧАСТЬ

1.1 Расчет вероятности β -распада

Общая формула
 β -распада ядра с зарядовым числом Zи массовым число
мAимеет следующий вид:

$${}^{A}_{Z}X \longrightarrow {}^{A}_{Z+1}Y + e^{-} + \overline{\nu}_{e}.$$
(1)

В связи с тем, что взаимодействие в этом процессе достаточно слабое (гораздо слабее электромагнитного^[5]), для расчета вероятности β -распада можно применять методы теории возмущений.

Согласно золотому правилу Ферми вероятность перехода системы из начального состояния $|i\rangle$ с энергией E_i в некоторое конечное состояние $|f\rangle$ с энергией E_f в единицу времени при условии $E_0 = E_f - E_i$ равна

$$dW_{if} = \frac{2\pi}{\hbar} |\langle f | H' | i \rangle|^2 \, d\rho|_{E=E_0} \,, \tag{2}$$

где H' – гамильтониан малого возмущения, приводящего к переходу, а $d\rho$ – плотность конечных состояний на единицу энергии (статистический множитель).

Для β-распада в пренебрежении малой энергией отдачи ядра (~15 кэВ^[6]) полная энергия распределяется между электроном и антинейтрино:

$$E_0 = E_e + E_{\overline{\nu}}$$

Тогда статистический множитель можно представить в виде:

$$d\rho|_{E=E_0} = \left. \frac{d\widetilde{N}}{dE} \right|_{E=E_0} = \frac{1}{dE} \frac{V d^3 \mathbf{p}_{\mathbf{e}} V d^3 \mathbf{q}_{\overline{\nu}}}{(2\pi\hbar)^3 (2\pi\hbar)^3},$$

где $V d^3 \mathbf{p_e} / (2\pi\hbar)^3$ – число состояний электрона для значений импульса в интервале от $\mathbf{p_e}$ до $\mathbf{p_e} + d\mathbf{p_e}$, $V d^3 \mathbf{q}_{\overline{\nu}} / (2\pi\hbar)^3$ – число состояний антинейтрино для значений импульса в интервале от $\mathbf{q}_{\overline{\nu}}$ до $\mathbf{q}_{\overline{\nu}} + d\mathbf{q}_{\overline{\nu}}$.

Представив дифференциалы в виде

$$d^{3}\mathbf{p}_{\mathbf{e}} = p_{e}^{2}dp_{e}d\Omega_{e},$$
$$d^{3}\mathbf{q}_{\overline{\nu}} = q_{\overline{\nu}}^{2}dq_{\overline{\nu}}d\Omega_{\overline{\nu}},$$

с учетом релятивистских соотношений, получим

$$p_e^2 dp_e = p_e E_e dE_e / c^2,$$
$$q_{\overline{\nu}}^2 dq_{\overline{\nu}} = q_{\overline{\nu}} E_{\overline{\nu}} dE_{\overline{\nu}} / c^2.$$

Подставляя полученные значения в (2) и интегрируя по углам для числа β - и $\overline{\nu}$ -частиц с энергией в интервале от E до E + dE получим выражения:

$$dW_{if} = \frac{1}{2\pi^3 \hbar^7 c^5} |\langle f|H|i\rangle|^2 \sqrt{E_e^2 - m^2 c^4} E_e (E_0 - E_e)^2 dE_e, \qquad (3)$$

$$dW_{if} = \frac{1}{2\pi^3\hbar^7 c^5} |\langle f|H|i\rangle|^2 \sqrt{(E_0 - E_{\overline{\nu}})^2 - m^2 c^4} (E_0 - E_{\overline{\nu}})^2 E_{\overline{\nu}}^2 dE_{\overline{\nu}}.$$
 (4)

1.2 Функция Ферми

Корректный расчет спектров β - и $\overline{\nu}$ - частиц невозможен без учета влияния поля ядра. Это обстоятельство приводит к тому, что в выражения для β - и $\overline{\nu}$ -спектров (3,4) необходимо вводить множитель F(Z, E), называемый функцией Ферми.

Функция Ферми F(Z, E) описывает кулоновское взаимодействие точечного дочернего ядра с β -электроном. Формально она определяется как^[6]

$$F_0(Z, E_e) = rac{|\Psi_U|^2}{|\Psi_0|^2},$$

где Ψ_U – решение уравнения Дирака в кулоновском потенциале, Ψ_0 – решение свободного уравнения Дирака.

Явный вид функции Ферми^[6]:

$$F_0(Z, E_e) = 2(\gamma + 1) \left(\frac{2p_e R}{\hbar c}\right)^{2(\gamma - 1)} e^{\left(\frac{\pi \alpha Z E_e}{p_e}\right)} \frac{|\Gamma(\gamma + \frac{i\alpha Z E_e}{p_e})|^2}{|\Gamma(2\gamma + 1)|^2},\tag{5}$$

где $\alpha = 1/137$ – постоянная тонкой структуры, p_e – импульс электрона, E_e – полная энергия вылетевшего электрона, R – радиус родительского ядра, Z – заряд дочернего ядра, $\gamma = \sqrt{1 - (\alpha Z)^2}$, $\Gamma(z)$ – гамма-функция Эйлера комплексной переменной.

Тогда форма спектра электронов в результате β -распада с учетом выражения (3) может быть представлена в следующем виде^[7]:

$$S_e(E_e; E_0, Z) = K p_e E_e(E_0 - E_e)^2 F_0(Z, E_e) C(Z, E_e, E_0),$$
(6)

где K – нормировочный множитель, E_0 – энергия перехода, $C(Z, E_e, E_0)$ – фактор формы, включающий в себя ядерный матричный элемент гамильтониана возмущения H' между конечным и начальным состояниями. Для разрешенных β -переходов $C(Z, E_e, E_0) = 1^{[8]}$.

Спектр антинейтрино $S_{\overline{\nu}}(E_{\overline{\nu}}; E_0, Z)$ получается заменой E_e в формуле (6) на $E_0 - E_{\overline{\nu}}$:

$$S_{\overline{\nu}}(E_{\overline{\nu}}; E_0, Z) = K p_{\overline{\nu}} E_{\overline{\nu}}^2 (E_0 - E_{\overline{\nu}}) F(Z, E_0 - E_{\overline{\nu}}) C(Z, E_0 - E_{\overline{\nu}}).$$
(7)

1.3 Построение суммарного спектра изотопа

При построении суммарного спектра бета-частиц и антинейтрино при β -распаде конкретного изотопа необходимо учитывать вероятностный характер самого распада. Для большинства изотопов характерно наличие большого количества возможных β -переходов с разной степенью запрета и разной энергией перехода. Каждый такой переход может произойти с некоторой вероятностью, определяемой его матричным элементом.

Рисунок 1 — Схема возможных β -переходов изотопа.

Для получения суммарного спектра необходимо просуммировать все одиночные спектры определенного изотопа с учетом вероятностей их реализации. При условии нормировки единичных спектров суммарный спектр также является отнормированным.

Таким образом, форму суммарных спектров бета-частиц и антинейтрино можно представить в следующем виде:

$$S_e^{iso} = \sum^n P_k S_{ek},\tag{8}$$

$$S_{\overline{\nu}}^{iso} = \sum^{n} P_k S_{\overline{\nu}k},\tag{9}$$

где n – количество возможных переходов, P_k – вероятность k-го перехода, S_{ek} и $S_{\overline{\nu}k}$ - одиночные спектры k-го перехода(6,7).

1.4 Построение кумулятивного спектра изотопа

Для получения кумулятивного спектра продуктов деления изотопа необходимо просуммировать спектры всех возможных дочерних ядер с учетом их кумулятивных выходов. Кумулятивный выход подразумевает под собой суммарную вероятность того, что нужное дочернее ядро получится либо в результат непосредственно деления материнского ядра, либо как продукт деления одного из его осколков.

Представить форму кумулятивных спектров бета-частиц и антинейтрино можно в следующем виде:

$$S_e^{tot} = \sum_{e}^{n} CY(Z, A) S_{ek}^{iso}, \tag{10}$$

$$S_{\overline{\nu}}^{tot} = \sum_{\nu}^{n} CY(Z, A) S_{\overline{\nu}k}^{iso}, \qquad (11)$$

где CY(Z, A) — кумулятивный выход изотопа с зарядовым числом Z и массовым числом A.

1.5 Реконструирование позитронного (β^+) спектра

С момента открытия в экспериментах на ядерном реакторе, детектирование антинейтрино осуществляется, в основном, по реакции обратного бетараспада (ОБР):

$$\overline{\nu}_e + p \to n + e^+. \tag{12}$$

Позитронный спектр получается сверткой потока антинейтрино с дифференциальным сечением OEP[9]:

$$\frac{dN_{e^+}}{dE_{e^+}}(E_{e^+}) = \epsilon N_p \int_{E_{\overline{\nu}\,\min}}^{E_{\overline{\nu}\,\max}} \Phi_{\overline{\nu}}(E_{\overline{\nu}}) \cdot \frac{d\sigma_{\text{IBD}}}{dE_{e^+}}(E_{e^+},\overline{\nu}) \, dE_{\overline{\nu}},\tag{13}$$

где ϵ – эффективность регистрации, N_p – число протонов мишени, $\Phi_{\overline{\nu}}$ – поток реакторных антинейтрино, σ_{IBD} – сечение реакции ОБР.

Связь потока реакторных антинейтрино с кумулятивным спектром антинейтрино можно представить в следующем виде:

$$\Phi_{\overline{\nu}}(E_{\overline{\nu}}) = \frac{P_{th}S_{\overline{\nu}}^{tot}(E_{\overline{\nu}})}{4\pi L^2\varepsilon},\tag{14}$$

где P_{th} — тепловая мощность реактора, L — расстояние от детектора до реактора, ε — тепловая энергия, выделяемая при делении, $S_{\overline{\nu}}^{tot}$ — кумулятивный спектр антинейтрино(11).

Тогда выражение для позитронного спектра можно привести к виду:

$$\frac{dN_{e^+}}{dE_{e^+}}(E_{e^+}) = \frac{\epsilon N_p P_{th}}{4\pi L^2 \varepsilon} \int_{E_{\overline{\nu}} \min}^{E_{\overline{\nu}} \max} S_{\overline{\nu}}^{tot}(E_{\overline{\nu}}) \cdot \frac{d\sigma_{\text{IBD}}}{dE_{e^+}}(E_{e^+}, E_{\overline{\nu}}) \, dE_{\overline{\nu}}, \tag{15}$$

Деление на множитель перед интегралом позволяет перейти к более универсальной форме спектра, не зависящей от характеристик экспериментальной установки и конкретного реактора-источника:

$$S_{e^+}(E_{e^+}) = \int_{E_{\overline{\nu} \min}}^{E_{\overline{\nu} \max}} S_{\overline{\nu}}^{tot}(E_{\overline{\nu}}) \cdot \frac{d\sigma_{\text{IBD}}}{dE_{e^+}}(E_{e^+}, E_{\overline{\nu}}) dE_{\overline{\nu}}.$$
 (16)

Такое представление спектра наиболее удобно для анализа и сравнения с экспериментальными данными, при этом $S_{e^+}(E_{e^+})$ имеет размерность $[cm^2/(деление \cdot M \ni B)].$

Методы расчета дифференциального сечения ОБР представлены в работах [9], [10]. В системе покоя протона эта величина может быть выражена в явном виде:

$$\frac{d\sigma_{\rm IBD}}{dE_{e^+}}(E_{e^+}, E_{\nu}) = 2m_p \frac{G_F^2 |V_{ud}|^2}{2\pi (s - m_p^2)^2} |\mathcal{M}|^2 \tag{17}$$

при условии, что

$$E_{\overline{\nu}} \ge \frac{(m_n + m_e)^2 - m_p^2}{2m_p} \approx 1.806 \text{ M} \circ \text{B},$$
 (18)

где G_F — постоянная Ферми слабого взаимодействия, V_{ud} — ud—элемент СКМматрицы смешивания, $s = (p_p^i + p_{\overline{\nu}}^i)^2 = 2m_p E_{\overline{\nu}}$ — мандельштамовская переменная, p^i — 4-импульс, m_p, m_n, m_e — массы протона, нейтрона и электрона соответственно. Явный вид функции \mathcal{M} представлен в работе [10].

Реконструирование позитронного спектра позволяет проводить сравнение теоретической модели с экспериментальными данными (эксперименты RENO[11], DayaBay[12], PROSPECT[12] и др.).

2. ПРАКТИЧЕСКАЯ ЧАСТЬ

В настоящей работе все необходимые для расчета модельных спектров экспериментально полученные данные (вероятности в схемах переходов, кумулятивные выходы) брались из библиотеки ядерных экспериментальных данных ENDF (Evaluated Nuclear Data File) версии B-VIII.1 и из библиотеки ядерных баз данных ENSDF (Nuclear Data Services).

На данный момент были получены:

- Кумулятивные спектры бета-частиц и антинейтрино продуктов деления ²³⁵U, ²³⁸U, ²³⁹Pu, ²⁴¹Pu;
- Модельные позитронные спектры вышеперечисленных изотопов.

При расчете спектров на данный момент все переходы полагаются разрешенными. Также не был учтен вклад метостабильных изотопов и возможных поправок (учтена только функция Ферми).

Для проверки модели было проведено сравнение полученных в работе спектров бета-частиц с экспериментально полученными в работах [13, 14, 15] значениями (Рис. 2-5). На тех же рисунках приведено сравнение с другой существующей моделью BESTIOLE (Beta Energy Spectrum Tool for an Improved Optimal List of Elements)[16]. Данная модель была выбрана для сравнения по следующим причинам:

- Данная модель, как и модель в настоящей работе, построена на методе прямого суммирования;
- Другие модели, построенные на этом методе, позволяют расчитывать меньшее количество точек спектра, в связи с чем теряется точность;
- Данная модель является одной из самых последних на момент написания настоящей работы.

Рисунок 2 — Отношение модельных спектров бета-частиц от β -распада ²³⁵U к экспериментальному спектру.

Рисунок 3 — Отношение модельных спектров бета-частиц от β -распада ²³⁸U к экспериментальному спектру.

Рисунок 4 — Отношение модельных спектров бета-частиц от β -распада ²³⁹Ри к экспериментальному спектру.

Рисунок 5 — Отношение модельных спектров бета-частиц от β -распада ²⁴¹Ри к экспериментальному спектру.

Также было проведено сравнение полученных в работе позитронных спектров ²³⁵U и ²³⁹Pu с экспериментально полученными в работе [12] (Puc. 6-7). На тех же рисунках приведено сравнение с позитронными спектрами, реконструированными из спектров антинейтрино модели BESTIOLE. Для модельных спектров была учтена поправка на заниженную экспериментальную статистику (реакторная антинейтринная аномалия[17]).

Рисунок 6 — Отношение экспериментального позитронного спектра от деления ²³⁵U к модельным позитронным спектрам.

Рисунок 7 — Отношение экспериментального позитронного спектра от деления ²³⁹Ри к модельным позитронным спектрам.

ЗАКЛЮЧЕНИЕ

Данная научно-исследовательская работа посвящена исследованию и расчету спектров бета-частиц и антинейтрино от β -распада.

Для начала из кинематических соображений были получены спектры бета-частиц и антинейтрино в нулевом приближении.

Далее было учтено влияние поля ядра на процесс перехода, был записан явный вид функции Ферми (5), описывающей поправку на это влияние.

Были получены общие формулы (6) и (7), описывающие формы спектра бета-частиц и антинейтрино от единичного β -распада с известной энергией перехода. Суммированием этих спектров с учетом вероятностей их реализации были получены полные спектры бета-частиц (8) и антинейтрино (9) от β -распада известного изотопа.

С учетом всех кумулятивных выходов дочерних изотопов, были реконструированы кумулятивные спектры (10), (11) основных радионуклидов, используемых в качестве топлива для ядерных реакторов.

Для сравнения с экспериментом и дальнейшего анализа были рассчитаны позитронные спектры (16) радионуклидов на основе реакции обратного бета-распада (ОБР).

Далее было проведено сравнение полученных в работе модельных спектров бета-частиц с другой моделью и с экспериментальными данными (Рис. 2-5). Из отношений видно, что настоящая модель имеет значительное сходство с моделью BESTIOLE. Однако настоящая модель имеет лучшее соответствие с экспериментом в мягкой области (до 3 МэВ), чем модель BESTIOLE, но имеет большее расхождение в зоне высоких энергий.

Также было проведено аналогичное сравнение для позитронных спектров (Рис. 6-7). Из отношений видно явное превышение экспериментальных

значений над теоретическими в зоне 5-6 МэВ. Это явление имеет название "bump"-эффект, его причины до сих пор не имеют четкого научного обоснования .

Тем самым, актуальной на данный момент остается задача анализа возможных причин несоответствия теоретических и экспериментальных спектров и поиск возможных значений варьируемых параметров для устранения расхождения.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- Thomas S. A., Abdalla F. B., Lahav O. Upper Bound of 0.28 eV on Neutrino Masses from the Largest Photometric Redshift Survey // Physical Review Letters. 2010. July. Vol. 105, no. 3. ISSN 1079-7114. DOI: 10.1103/physrevlett.105.031301.
- Reines F., Cowan C. L. Detection of the Free Neutrino // Physical Review. 1953. Nov. Vol. 92, no. 3. P. 830-831. ISSN 0031-899X. DOI: 10.1103/physrev.92.830.
- Reines F., Cowan C. L. Free Antineutrino Absorption Cross Section. I. Measurement of the Free Antineutrino Absorption Cross Section by Protons // Physical Review. — 1959. — Jan. — Vol. 113, no. 1. — P. 273– 279. — ISSN 0031-899X. — DOI: 10.1103/physrev.113.273.
- 4. Neutrino oscillations: status and prospects for the determination of neutrino mass ordering and the leptonic CP-violation phase / L. D. Kolupaeva [et al.] // Physics-Uspekhi. 2022. May. Vol. 66, no. 08. P. 753–774. ISSN 1468-4780. DOI: 10.3367/ufne.2022.05.039191.
- 5. *Б. С. Джелепов Л. Н. З.* Влияние электрического поля атома на Бетараспад // АН СССР. 1956.
- 6. *В. Г. Алексанкин С. В. Родичев П. М. Р. и. д.* Бета- и антинейтринное излучение радиоактивных ядер : Справочник // Энергоатомиздат. 1989.
- Hayes A. C., Vogel P. Reactor Neutrino Spectra // Annual Review of Nuclear and Particle Science. — 2016. — Oct. — Vol. 66, no. 1. — P. 219-244. — ISSN 1545-4134. — DOI: 10.1146/annurev-nucl-102115-044826.

- Mougeot X., Bé M.-M., Bisch C. Calculation of beta spectral shapes // Radioprotection. — 2014. — Sept. — Vol. 49, no. 4. — P. 269–273. — ISSN 1769-700X. — DOI: 10.1051/radiopro/2014017.
- 10. Strumia A., Vissani F. Precise quasielastic neutrino/nucleon cross-section // Physics Letters B. — 2003. — July. — Vol. 564, no. 1/2. — P. 42–54. — ISSN 0370-2693. — DOI: 10.1016/s0370-2693(03)00616-6.
- 11. Measurement of reactor antineutrino flux and spectrum at RENO / S. G.
 Yoon [et al.] // Physical Review D. 2021. Dec. Vol. 104, no.
 11. ISSN 2470-0029. DOI: 10.1103/physrevd.104.1111301.
- 12. Joint Determination of Reactor Antineutrino Spectra from ²³⁵U and ²³⁹Pu Fission by Daya Bay and PROSPECT / F. P. An [et al.] // Physical Review Letters. 2022. Feb. Vol. 128, no. 8. ISSN 1079-7114. DOI: 10.1103/physrevlett.128.081801.
- Determination of the antineutrino spectrum from ²³⁵U thermal neutron fission products up to 9.5 MeV / K. Schreckenbach [et al.] // Physics Letters B. — 1985. — Oct. — Vol. 160, no. 4/5. — P. 325–330. — ISSN 0370-2693. — DOI: 10.1016/0370-2693(85)91337-1.
- 14. Antineutrino spectra from ²⁴¹Pu and ²³⁹Pu thermal neutron fission products / A. Hahn [et al.] // Physics Letters B. 1989. Feb. Vol. 218, no. 3. P. 365–368. ISSN 0370-2693. DOI: 10.1016/0370-2693(89)91598-0.
- Experimental Determination of the Antineutrino Spectrum of the Fission Products of ²³⁸U / N. Haag [et al.] // Physical Review Letters. 2014. Mar. Vol. 112, no. 12. ISSN 1079-7114. DOI: 10.1103/ physrevlett.112.122501.

- 16. A comprehensive revision of the summation method for the prediction of reactor antineutrino fluxes and spectra / L. Perissé [et al.]. 2023. DOI: 10.48550/ARXIV.2304.14992.
- 17. Reactor antineutrino anomaly / G. Mention [et al.] // Physical Review
 D. 2011. Apr. Vol. 83, no. 7. ISSN 1550-2368. DOI: 10.1103/physrevd.83.073006.