

# Расчет ожидаемого эффекта от упругого когерентного рассеяния реакторных антинейтрино в детекторе на основе Nal

Научный руководитель: Литвинович Е.А. (доц., к.ф.-м.н.) Студент: Крапля В.М.

Москва 2025г

55

50

## Введение - УКРН

Формула дифференциального сечения УКРН, где

- Т энергия отдачи ядра [кэВ]
- Gf постоянная ферми [ГэВ<sup>-2</sup>]
- М масса ядра [МэВ]
- Е энергия нейтрино [МэВ]
- N число нейтронов

Сечение УКРН на несколько порядков больше чем у Обратного бета распада, что позволяет создавать детекторы с меньшей массой мишени.



10-4

10<sup>-5</sup>

<sup>133</sup>Cs CEvNS

15

20

25

Neutrino Energy (MeV)

 $-v_{e}^{127}ICC$ 

- IBD

•••v\_-e



- Pb v NIN total

---- Pb v NIN 1n ..... Pb v<sub>e</sub> NIN 2n

45

## Цель и задачи работы



- Цель: вычисление ожидаемого эффекта УКРН в сцинтилляторе Nal(Tl)
- Задачи:
- Изучение методов производства свехчистых сцинтилляторов Nal(Tl)
- 2. Построение спектра реакторных антинейтрино
- 3. Расчет спектров квенч-факторов для различных атомов
- 4. Расчет и построение спектров ядер отдачи для Nal(Tl)





- УКРН позволяет определять неточности параметров в рамках стандартной модели (СМ), например угол электрослабого смешивания.
- Также УКРН позволяет искать новую физику за рамками СМ: стерильные нейтрино, нестандартные нейтринные взаимодействия, аномальный магнитный момент нейтрино.
- УКРН открывает возможность к объективному мониторингу ядерных реакторов (их мощности и относительно топливного состава)

# Производство сверхчистых кристаллов Nal(Tl)



### Подготовка шихты -> Кристаллизация -> Пост-обработка (очистка, сушка) (нарезка, чистка)



Схемы метода Бриджмена (а, в) и распределение температуры по высоте печи (б).

- **1** тигель;
- 2 расплав шихты;
- **3** кристалл;
- 4 на-греватель;
- 5 устройство для перемещения

контейнера;

6 — термопара;

**7** —экран;

стрелки — поток хладагента



| Элемент           | Обычные   | Кристаллы  | Кристаллы             | DAMA               |
|-------------------|-----------|------------|-----------------------|--------------------|
|                   | Кристаллы | NEON       | COSINE200             |                    |
| $U_{238}$         | 0.1-1 ppm | _          | <3.1  ppt             | _                  |
| $Th_{232}$        | 0.1-1 ppm | -          | <3.6  ppt             | 0.5-7.5 ppt        |
| $\mathbf{K}_{40}$ | 1-10 ppm  | 22-137 ppb | $<\!\!20 \text{ ppb}$ | $<\!\!20~{ m ppb}$ |

Таблица 1 - Степень чистоты кристаллов NaI(Tl)

Где **ppm**- количество частей частицы загрязнителя на миллион частей вещества, **ppb** - на миллиард частей вещества, **ppt** - на триллион частей вещества.

Расчет скорости счета полезных событий в 1 кг вещества от УКРН



$$\Phi_{\nu}(E_{\nu}) = \frac{1}{32} \times \frac{10^{20}}{4\pi L^2} \times f(E_{\nu})$$

#### Формула потока нейтрино

 L – расстояние от активной зоны реактора до детектора [см]
 10<sup>20</sup> – поток нейтрино в секунду от реактора тепловой мощностью 3 ГВт [<sup>V</sup>/<sub>c</sub>]
 f(Ev) – суммарный энергетический спектр нейтрино от всех делящихся изотопов [<sup>V</sup>/<sub>MaB</sub>]







Квенч-фактор для атомов Йода и Натрия



## **Q(E)** – **квенч-фактор**, описывает гашение энергии передаваемой нейтрино к ядрам, влияет на наблюдаемую Т. [%]

**Li(E)**- Световыход для ионов  $\left[\frac{CM^2M_{9}B}{r}\right]$  **Le(E)**- Световыход для электронов  $\left[\frac{CM^2M_{9}B}{r}\right]$  **kB** – фактор Биркса (зависит от материала)  $\left[\frac{r}{CM^2M_{9}B}\right]$  **dE/dr** – тормозящая способность (взята из ESTAR,SRIM) **E** – энергия частицы [МэВ]





# Формула для определения числа событий УКРН:

Na – количество атомов в мишени
Фi – поток нейтрино сорта і [<sup>V</sup>/<sub>см<sup>2</sup>с МэВ</sub>]
do/dTobs – дифференциальное
сечение [<sup>см<sup>2</sup></sup>/<sub>МэВ</sub>]
Tobs – энергия ядра отдачи с учетом квенч-фактора [МэВ]
Ev – энергия нейтрино [МэВ]
T - энергия ядра отдачи [кэВ]

$$N_{\alpha} = \frac{m_{detecor}}{\sum_{\alpha} M_{\alpha} \eta_{\alpha}} N_A \eta_{\alpha}$$

Где  $\alpha$ -вид атома,  $M\alpha$ -молярная масса  $\left[\frac{\Gamma}{MOЛB}\right]$   $\eta\alpha$ -стехиометрическая доля [%] соответствующего атома NA-число Авогадро  $\left[\frac{1}{MOЛB}\right]$ 

## Результаты

Ожидаемый эффект УКРН в GAGG 10<sup>2</sup> Events/keV/day/kg







НИЯУ

CDN

## Результаты





Суммирование
 предыдущих гистограмм
 производилось с учетом
 стехиометрических
 коэффициентов для
 различных материалов
 Nal(Tl) имеет наибольший
 эффект УКРН в регионе от
 200 до 600 эВ ядерной

отдачи





- Чистота от примесей непосредственно самого кристалла сцинтиллятора накладывает основные ограничения на величину энергии порога детектирования.
- 2. Наблюдение эффекта УКРН от реакторных антинейтрино требует субкэвных порогов детектирования и массы активного вещества больше килограмма.
- 3. Ввиду малости эффекта УКРН необходимо точно знать значения фоновых «шумов» для успешного наблюдения эффекта