Министерство науки и высшего образования Российской Федерации Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский ядерный университет «МИФИ»

УДК 539.1

ОТЧЕТ О НАУЧНО-ИССЛЕДОВАТЕЛЬСКОЙ РАБОТЕ ФОН КОСМОГЕННОГО ПРОИСХОЖДЕНИЯ В ЭКСПЕРИМЕНТЕ DEAP-3600

Научный руководитель (старший преподаватель) И. Н. Мачулин Научный консультант (к.ф.м.н.) Г.Д. Долганов

Студент

_____ П. А. Панфилов

Москва2024

Введение

Изучение природы скрытой массы Вселенной остается одной из ключевых задач современной физики. Наблюдения кривых вращения галактик указывают на существование невидимой компоненты материи, известной как скрытая масса [1]. Эта материя не взаимодействует с электромагнитным излучением, что делает её прямое обнаружение исключительно сложным. Считается, что взаимодействие скрытой массы осуществляется только через гравитационные и слабые взаимодействия.

Эксперимент DEAP-3600 представляет собой попытку обнаружить слабо взаимодействующие массивные частицы (WIMPs), которые считаются одними из основных кандидатов на роль скрытой массы. Детектор, расположенный на глубине 2 километра под землей в лаборатории SNOLAB [2] (Канада), использует жидкий аргон в качестве рабочей среды. Помимо детектирования тёмной материи, данный детектор может использоваться и для регистрации солнечных нейтрино. Одним из сточников космического фона в детекторе являются мюоны космогенного происхождения.

Атмосферные мюоны образуются в результате взаимодействия первичных космических лучей с атомами верхних слоёв атмосферы Земли. Первичные космические лучи состоят преимущественно из протонов и ядер лёгких элементов, движущихся с высокими энергиями. При столкновении с атомными ядрами в атмосфере они порождают каскад вторичных частиц, среди которых значительную долю составляют пионы (π -мезоны). Заряженные пионы быстро распадаются на мюоны и нейтрино:

$$\pi^+ \to \mu^+ + \nu_\mu,\tag{1}$$

$$\pi^- \to \mu^- + \bar{\nu}_\mu. \tag{2}$$

Мюоны, обладая сравнительно большой массой (примерно в 207 раз больше массы электрона) и временем жизни около 2,2 микросекунды, способны проникать через плотные слои атмосферы и достигать поверхности Земли. Их высокая проникающая способность обусловлена тем, что мюоны, в отличие от электронов, теряют энергию в веществе преимущественно через ионизационные потери, а не излучение. Это позволяет им преодолевать значительные расстояния без существенного ослабления потока.

Рис. 1: Качественная схема взаимодействия протона космических лучей с ядрами в земной атмосфере: Л—лидирующая частица; Я—ядерное вза-имодействие; Э/М—электромагнитное; СЛ—слабое.

На поверхности Земли поток мюонов составляет значительную часть космического излучения, и их интенсивность зависит от высоты над уровнем моря и геомагнитных условий. Понимание происхождения и характеристик космических мюонов имеет важное значение для экспериментов по поиску тёмной материи, таких как DEAP-3600, поскольку мюоны являются основным источником фоновых событий, которые необходимо учитывать при анализе данных.

Атмосферные мюоны, проникая в детектор, взаимодействуют с ядрами аргона, что может приводить к образованию космогенных изотопов. Такие изотопы могут распадаться с выделением большого количества энергии, что требуется учитывать при точной оценки уровня фона в детекторе. Для моделирования космогенного фона использовалась программа FLUKA, обеспечивающая моделирование ядерных взаимодействий с высокой точностью. Цель данной работы заключается в построении спектров распада изотопов, образовавшихся в детекторе DEAP-3600 за счёт взаимодействия жидкого аргона и космических мюонов.

1 Эксперимент DEAP-3600

1.1 Основные компоненты детектора

Тело детектора DEAP-3600 состоит из акриловой сферы, заполненной жидким аргоном высокой чистоты, который используется в качестве рабочей среды. Снаружи акриловой сферы расположены фотоумножители, предназначенные для регистрации света, возникающего при взаимодействии детектируемых частиц с аргоном. [5].

1.2 Регистрация темной материи

Принцип детектирования в эксперименте DEAP-3600 основан на регистрации сигналов, возникающих при взаимодействии частиц тёмной материи с ядрами аргона. В результате такого взаимодействия ядро аргона может перейти в возбуждённое состояние (или ионизоваться), после чего происходит образование эксимеров (возбуждённых димеров аргона). Эти эксимеры сцинтиллируют и распадаются. Сцинтилляция регистрируется фотоумножителями. Схематично процесс представлен на рисунке 2.

Рис. 2: Физические процессы, происходящие при взаимодействии WIMP с аргоном.

1.3 Защита от космогенного фона в эксперименте

Для минимизации космогенного фона, помимо размещения детектора на глубине 2 км под землёй, он дополнительно помещён в большую бочку, заполненную водой. При прохождении атмосферных мюонов через воду возникает черенковское излучение, которое проявляется в виде характерного синего свечения. Это свечение регистрируется внешними фотоумножителями, позволяя идентифицировать события, связанные с мюонами. При обнаружении таких событий процесс регистрации данных временно прекращается, чтобы исключить фоновые сигналы, вызванные взаимодействием мюонов [5].

2 Образование изотопов в детекторе

2.1 Взаимодействие мюонов и аргона

Средний поток мюонов на глубине 2000 метров под землёй составляет [3]:

$$I_{\mu} = (3.31 \pm 0.01 stat. \pm 0.09 sys.) \times 10^{-10} \frac{\mu}{\text{s} \cdot \text{cm}^2}$$
(3)

Мюоны, проходящие через детектор, взаимодействуют с ядрами аргона, вызывая ядерные реакции. В результате могут образовываться изотопы, сигналы которых невозможно эффективно подавить способом, описанным в разделе 1.3, так как они могут распадаться за пределами временного окна блокировки регистрации событий.

2.2 Моделирование взаимодействия мюонов с аргоном

Для анализа уровня фона от таких изотопов использовались данные проведённого ранее моделирования с использованием программного пакета **Fluka**. Моделирование проводилось на протяжении эквивалента $431 \pm 11,8$ лет наблюдений.

2.2.1 Энергии мюонов

В качестве входных данных для моделирования использовались распределения мюонов по энергиям и по углам падения [4] (рис. 3, 4).

Рис. 3: Дифференциальный спектр мюонов по энергиям в логарифмическом масштабе

Рис. 4: Угловое распределение моделируемых мюонов.

2.2.2 Результаты моделирования

По результатам моделирования имеются данные о наработанных изотопах, возникающих в процессе взаимодействия мюонов с ядрами аргона. Особый интерес представляют изотопы, которые могут распадаться с выделением большого количества энергии (>9 MeV), так как в области данных энергий фон детектора имеет преимущественно космогенное происхождение. Таблица 1 с результатами моделирования включает перечень изотопов, их количество, тип распада, период полураспада и энергию распада.

Element	Number of isotopes	Decay	Half-life	Energy
⁹ Li	3	β^{-}	$178,3 \mathrm{ms}$	$13606~{\rm keV}$
¹³ Be	1	β^{-}	$17,4 \mathrm{\ ms}$	13836 keV
²¹ Mg	1	β^+	122,0 ms	$13098~{\rm keV}$
$^{12}\mathrm{B}$	2	β^{-}	$20,2 \mathrm{~ms}$	13369 keV
²⁶ Na	3	β^{-}	1,1 s	9354 keV
¹⁶ N	2	β^{-}	7,1 s	$10419~{\rm keV}$
⁸ Li	10	β^{-}	839,9 ms	16005 keV

Таблица 1: Изотопы, наработанные в процессе моделирования

2.3 Построение спектров распада изотопов

Для анализа распада изотопов были построены энергетические спектры с использованием языка программирования **Python**. В рамках работы выполнены следующие задачи:

1. Построение дифференциальных спектров для всех изотопов, полученных в процессе моделирования, и их суммарного спектра (рис. 5).

2. Оценка погрешности дифференциального суммарного спектра методом Монте-Карло (рис. 6).

Рис. 5: Дифференциальный спектр распада изотопов

Рис. 6: Дифференциальный спектр распада изотопов с учетом погрешности

В результате по спектру вычислено ожидаемое количество событий в диапазоне от 10,5 MeV до 13 MeV, возникающих в детекторе за 815 дней (время набора данных эксперимента), а также верхняя и нижняя оценки для этой величины с доверительной вероятностью $\alpha = 68\%$.

$$N_{total} = 0.0164$$
 событий (4)

$$N_{max} = 0.0207$$
 событий (5)

$$N_{min} = 0.0120$$
 событий (6)

3 Вывод

3.1 Результаты работы

1) Были построены спектры распада для наработанных за $431 \pm 11, 8$ лет моделирования на Fluka изотопов, образованных за счет взаимодействия мюонов космогенного происхождения с жидким аргоном внутри детектора(рис. 5, 6).

2) Было получено количество событий с регистрируемым энерговыделением в диапазоне от 10,5 MeV до 13 MeV, возникающих в детекторе за время набора данных эксперимента с верхней и нижней оценкой для доверительной вероятности $\alpha = 68\%$.

 $N_{total} = 0.0164$ событий $N_{max} = 0.0207$ событий $N_{min} = 0.0120$ событий

3.2 Дальнейшая работа

- 1) Учет вклада изотопов, образующихся в других частях детектора.
- 2) Учет энергетического разрешения самого детектора DEAP-3600.
- 3) Учет временного окна мюонного вето.
- 4) Оптимизация временного окна мюонного вето.

Список литературы

[1] Rubin, V. C., Ford Jr., W. K., Thonnard, N. (1980). Rotational properties of 21 SC galaxies with a large range of luminosities and radii, from NGC 4605/R to UGC 2885. The Astrophysical Journal, $\mathbf{238},$ 471–487.

- [2] SNOLAB official site. Available at: https://www.snolab.ca/
- [3] Aharmim B. et al. Measurement of the cosmic ray and neutrinoinduced muon flux at the Sudbury neutrino observatory *Physical Review D*-Particles, Fields, Gravitation, and Cosmology. - 2009. - T. 80. - №. 1. - C. 012001.
- [4] M., Hime A. Muon-induced background study for underground laboratories *Physical Review D−Particles*, *Fields*, *Gravitation*, and *Cosmology*. – 2006. –T.73, – №. 5. – C. 053004.
- [5] Amaudruz, P.-A., et al. (2017). Design and construction of the DEAP-3600 dark matter detector. Astroparticle Physics, 85, 1–23.