

Управление напряжением детекторов макета ПЭТ при помощи микроконтроллера ATmega328P

Студент: Конотоп Алексей Давидович, студент группы М24-112 кафедры №40 «Физика элементарных частиц и космология» ИЯФиТ НИЯУ МИФИ, лаборант-исследователь ЛФРП ОФН НИЦ «Курчатовский институт»

Научный руководитель: Дубинин Филипп Андреевич, старший преподаватель кафедры №40 «Физика элементарных частиц и космология», лаборант-исследователь ЛФРП ОФН НИЦ «Курчатовский институт» Позитронный распад и аннигиляция электрон-позитронной пары

Принципы ПЭТ-сканирования

- Радиоактивный распад
- Аннигиляция позитрона, рождение двух гамма-квантов
- Детектирование гамма-квантов
- Восстановление изображения

Фтордизоксиглюкоза (FDG)

FDG является наиболее часто используемым радиофармпрепаратом в ПЭТ-визуализации. Он содержит радиоактивный изотоп F-18 и имитирует глюкозу. Из-за высокого потребления глюкозы раковыми клетками и некоторыми другими активными тканями, FDG-ПЭТ широко используется для диагностики, определения стадии и мониторинга рака.

Радионуклид	Полураспад	Тип распада	E _{max} , МэВ
¹¹ C	20,4 мин	β ⁺ (100)	0,970
¹³ N	10 мин	β ⁺ (100)	1,2
¹⁵ 0	2 мин	β ⁺ (100)	1,74
¹⁸ F	110 мин	β⁺(97)	0,64
⁶⁸ Ga	68 мин	β ⁺ (89)	1,9
⁸² Rb	72 c	β⁺(95)	3,25
¹²⁴	4,2 дней	β ⁺ (23)	2,14

Макет ПЭТ

32-канальная плата Petiroc2A Сигнальные кабели с GAGG(Ce) детекторов к анализатору SiPM

Плата питания

Неоднородность установки

3/12

Кремниевый фотоумножитель

SiPM structure

All of the microcells are connected in parallel

SiPM versus APD

Температурная зависимость напряжения пробоя V _{br}	21.5 мВ/°С
Температурная зависимость усиления	-0.8 %/ºC

- Differ in construction
- Gain_{SiPM} >> Gain_{APD} •
- F_{SiPM} << F_{APD}

Схема на базе операционного усилителя 'Rail-to-Rail'

•

- простота исполнения
- компактность
- возможность внедрения цифрового управления

- Необходим заказ печатной платы

Цифровое управление. ATmega328P

- Дешевизна
- Достаточное быстродействие (16 МГц)
- Поддержка интерфейсов I2C и RS232
- Встроенный 10-разрядный ADC
- Поддержка внешних прерываний

Цифровое управление. Подбор ЦАП

Выходное сопротивление делителя: Ro=R2 || R3 = 27*0,91/(27+0,91) = 0,88 кОм Постоянная времени делителя Ro*C2 = 0,088 мс Коэфициент передачи по постоянному току: K = R3/(R2+R3) = 0.033 U30 = 30*K = 0.99 B напряжения при одинаковом коде ЦАП отличаются на 100 мВ!

При качественном подборе компонентов

При длительной работе (4 часа) напряжение на выходе стабильно

Измерение производится с наблюдением за температурой

- 12 разрядов

- поддержка I2C

Цифровое управление. Механизм обратной связи

Напряжение на выходе схемы подстройки от времени

Цифровое управление. Программное обеспечение

COM7: 9600_8N1						
			AO, V	AI, V	No.	
			25.991	24.986	Ch. 0	
Temperature =	24	с	24.970	24.970	Ch. 1	
Humidity =	20.5	%				-
,						
00:17:39.913 ID=2302, Sc=126, Bt=40, Sm=Bad Disconnect						
)0:17:39.913 ID: Protocol:	=2302, Sc=	=126, B	t=40, Sm=Bad		Disconnect	
Protocol: Timestamp	=2302, Sc= dT	=126, B Len	t=40, Sm=Bad Data		Disconnect	^
DU: 17: 39.913 ID: Protocol: Timestamp 00: 17: 39.913	=2302, Sc= dT 985	=126, B Len 12	t=40, Sm=Bad Data 0a fe 08 00	cc 00 70 bc 7e	Disconnect	^
D0:17:39.913 ID: Protocol: imestamp 00:17:39.913 00:17:38.928	=2302, Sc= dT 985 1001	=126, B Len 12 27	t=40, Sm=Bad Data 0a fe 08 00 0a 75 12 17	cc 00 70 bc 7e 03 16 03 c0 c1	Disconnect 28 a0 0d 60 00 00 0	^
 Protocol: Protocol: Timestamp 00:17:39.913 00:17:38.928 00:17:37.927 	dT 985 1001 993	=126, B Len 12 27 27	t=40, Sm=Bad Data 0a fe 08 00 0a 75 12 17 0a 75 12 0e	cc 00 70 bc 7e 03 16 03 c0 c1 03 15 03 c0 bf	Disconnect 28 a0 0d 60 00 00 0 60 00 00 0	^
DU: 17: 39.913 ID: Protocol: Timestamp 00: 17: 39.913 00: 17: 38.928 00: 17: 37.927 00: 17: 36.934	dT 985 1001 993 1006	=126, B Len 12 27 27 27	t=40, Sm=Bad Data 0a fe 08 00 0a 75 12 17 0a 75 12 0e 0a 75 12 0f	cc 00 70 bc 7e 03 16 03 c0 c1 03 15 03 c0 bf 03 16 03 c0 bf	Disconnect 28 a0 0d 60 00 00 0 60 00 00 0 60 00 00 04	
 Protocol: Protocol: Timestamp 00:17:39.913 00:17:38.928 00:17:37.927 00:17:36.934 00:17:35.928 	=2302, Sc= dT 985 1001 993 1006 1007	=126, B Len 12 27 27 27 27 27	t=40, Sm=Bad Data 0a fe 08 00 0a 75 12 17 0a 75 12 0e 0a 75 12 0f 0a 75 12 0f	cc 00 70 bc 7e 03 16 03 c0 c1 03 15 03 c0 bf 03 16 03 c0 bf 03 16 03 c0 bd	Disconnect 28 a0 0d 60 00 00 0 60 00 00 0 60 00 00 04 60 00 00 0	
 OU: 17: 39.913 ID: Protocol: Timestamp O0: 17: 39.913 O0: 17: 39.913 O0: 17: 38.928 O0: 17: 37.927 O0: 17: 36.934 O0: 17: 35.928 O0: 17: 34.921 	=2302, Sc= dT 985 1001 993 1006 1007 984	=126, B Len 12 27 27 27 27 27 27 12	t=40, Sm=Bad Data 0a fe 08 00 0a 75 12 17 0a 75 12 0e 0a 75 12 0f 0a 75 12 06 0a fe 08 00	cc 00 70 bc 7e 03 16 03 c0 c1 03 15 03 c0 bf 03 16 03 c0 bf 03 16 03 c0 bd ce 00 70 be 7e	Disconnect 28 a0 0d 60 00 00 0 60 00 00 0 60 00 00 04 60 00 00 0 28 a0 0d	
 D0:17:39.913 ID: Protocol: Timestamp 00:17:39.913 00:17:38.928 00:17:37.927 00:17:36.934 00:17:35.928 00:17:34.921 00:17:33.937 	=2302, Sc= dT 985 1001 993 1006 1007 984 1001	=126, B Len 12 27 27 27 27 27 12 27	t=40, Sm=Bad Data 0a fe 08 00 0a 75 12 17 0a 75 12 0e 0a 75 12 0f 0a 75 12 06 0a fe 08 00 0a 75 12 ff (cc 00 70 bc 7e 03 16 03 c0 c1 03 15 03 c0 bf 03 16 03 c0 bf 03 16 03 c0 bd ce 00 70 be 7e 02 16 03 c0 bb	Disconnect 28 a0 0d 60 00 00 0 60 00 00 0 60 00 00 04 60 00 00 0 28 a0 0d 60 00 00 04	

Линейность универсального блока

• Uout, V • dU, V ······· Линейная (Uout, V)

Заключение

- Решение на операционном усилителе было доведено до рабочего варианта и показало высокую стабильность и линейность с малым напряжением смещения
- Реализовано цифровое управление на базе микроконтроллера и ЦАП
- Разработано программное обеспечение для регулирования и подстройки напряжения
- Произведена соответствующая калибровка каналов
- Показано, что благодаря калибровке каналов и алгоритму регулирования, предложенное цифровое решение не критично к точности подбора элементов схемы
- Успешно проведено масштабирование решения

СПАСИБО ЗА ВНИМАНИЕ!

По вопросам обращаться: Конотоп Алексей Давидович, +7(964)522-06-69 akonotop03@mail.ru

14/17

Характеристики модели ПЭТ

Лучшее энергетическое разрешение (511 кэВ) - 14 % Лучшее ЭР одиночного детектора (662 кэВ) - 8% Временное разрешение - 1.80 ± 0.07 нс (одиночный)

- много различных элементов
- необходимость двуполярного питания
- необходимость использовать дополнительные измерительные приборы
- отсутствие цифрового управления

Линейность и энергетическое разрешение (1 канал)

Зависимость напряжения питания от кода ADC

Зависимость энергетического разрешения от напряжения

• Схема с операционным усилителем

• Схема без операционного усилителя

- Небольшое ухудшение энергетического разрешения обусловлено меньшей статистикой набора данных
- 2. Аналогично наблюдается минимум в районе 29В

Линейность универсального блока

Отклонение наблюдаемого выходного значения от ожидаемого

Универсальное решение полностью подходит для заданной подстройки

Материалы детекторов

	LYSO(Ce)	BGO	Nal(Ti)	GAGG(Ce)
Плотность, г/см ²	7.1	7.13	3.67	6.63
Z _{eff}	63	73	50	54.4
λ _{max} , нм	420	480	415	520
t, нс	40	300	230	87(90%) 255(10%)
Световыход, фотон/кэВ	30	10	38	46
Гигроскопичность	Нет	Нет	Да	Нет
Радиоактивность	Да	Нет	Нет	Нет

Неорганические сцинтилляторы GAGG(Ce) 3x3x20 мм

Фотоприёмник: SiPM Onsemi FC30035

Напряжение пробоя V_{br} = 24.2 – 24.7 В

При длине волны 520 нм и перенапряжении 3 В:

Эффективность регистрации (PDE) = 17%

Усиление = 3 x 10⁶

Неоднородность установки

Установка для изучения неоднородности отклика

Схема на базе операционного усилителя 'Rail-to-Rail'

•

- простота исполнения
- компактность
- возможность внедрения цифрового управления

- более узкий диапазон подстройки
- возбуждение с f ~ 1кГц
- необходимость двуполярного питания

Модификация с операционным усилителем

•

- однополярное питание
- высокая стабильность
- удешевление
- возможность внедрить цифровое управление

- много компонентов
- сложность изготовления

Универсальный блок подстройки

\bullet

- однополярное питание
- высокая стабильность
- удешевление
- одновременная поддержка нескольких каналов

0

- сложность изготовления
- производство требует заказ печатных плат

Backup 2

