Изучение энергетического разрешения и эффективности восстановления событий с помощью Монте-Карло модели модернизированного эксперимента DANSS ЮСКО ЕВГЕНИЙ, М24-114

НАУЧНЫЙ РУКОВОДИТЕЛЬ — АЛЕКСЕЕВ И. Г.

Нейтрино и нейтринные осцилляции

- •Стандартная модель содержит 3 аромата нейтрино: v_e , v_μ и v_τ .
- •Очень малые массы.
- •Только слабое взаимодействие.
- •Аромат может изменяться при движении (нейтринные осцилляции).
- Частота осцилляций зависит от разности квадратов масс:
 Δm²₂₁ = (7,53 ± 0,18) · 10⁻⁵ эB²,
 |Δm²₃₂| = (2,15 ± 0,05) · 10⁻³ эB².

Стерильное нейтрино

- •Гипотетический 4-й аромат.
- •Не участвует даже в слабом взаимодействии.
- •Принимает участие в осцилляциях.
- •Предложен для объяснения аномальных результатов некоторых экспериментов.
 - <u>LSND, MiniBooNE, MicroBooNE</u>: появление $\bar{\nu}_e$ в пучках $\bar{\nu}_\mu$. Значимость 3,8 σ , 4,8 σ и 2,4 σ соответственно.
 - <u>Галлиевая аномалия (GALLEX, SAGE и BEST</u>): недостаток ν_e по сравнению с теоретическими предсказаниями. При объединении результатов значимость — > 5σ.
 - <u>Neutrino-4</u>: недостаток реакторных $\bar{\nu}_e$. Значимость < 3 σ .

•Следует отметить, что есть и множество экспериментов, не наблюдающих никаких аномалий в осцилляциях.

Эксперимент DANSS

- Размещён под одним из реакторов Калининской АЭС.
- Чувствительный объём 1 × 1 × 1 м³, составленный из 2500 стрипов из пластикового сцинтиллятора.
- Подвижная платформа позволяет изменять расстояние до реактора в пределах 10,9 ÷ 12,9 м.
- ФЭУ + КФУ

Получение и регистрация нейтрино

ПОЛУЧЕНИЕ РЕГИСТРАЦИЯ >Обратный бета-распад: Бета-распад в ядерном реакторе: $\bar{\nu}_e + p \rightarrow e^$ $n \rightarrow p + e^- + \overline{\nu_e}$ +nМгновенный Задержанный Выделение сигнал от e^+ сигнал от nЗамедление энергии Захват на ядре Аннигиляция гадолиния Мгновенный Задержанный $E_{e} \approx E_{\nu} - 1,8 \text{ M} \Rightarrow B$ сигнал сигнал $\sim 10^{0} \div 10^{2}$ мкс

DANSS после модернизации

•В настоящее время идёт процесс модернизации детектора.

- •Чувствительный объём 1,2 × 1,2 × 1,2 м³.
- •60 слоёв по 24 стрипа размером 2 × 5 × 120 см³.

•Только КФУ.

 Просмотр стрипов с обеих сторон, что позволяет по разнице времён на двух концах определять продольную координату.

Монте-Карло — бинарный файл

The signal of one photon

Бинарный файл состоит из отдельных записей, хранящих по 512 нс оцифрованного сигнала с обоих концов стрипа.

Анализ импульсов

Записи поочерёдно просматриваются, в них выделяются импульсы. Для каждого импульса определяются основные параметры:

- амплитуда;
- интеграл;
- время импульса (по пересечению фронта с половиной амплитуды);
- интеграл (энергия).

Выделение триггеров

•Под триггером понимается группа близко лежащих импульсов.

•Первый импульс создаёт первый триггер.

•В этот триггер включаются все импульсы, попадающие во временное окно триггера фиксированной ширины (300 нс), начинающееся с первым импульсом.

•Первый импульс, не попадающий в окно, создаёт следующий триггер.

•В идеальном случае каждому событию ОБР должны соответствовать два триггера: позитронный и нейтронный.

Затухание и продольная координата

- Для более точного восстановления энергии следует учитывать затухание.
- Поправка, связанная с затуханием, зависит от продольной координаты.
- Продольную координату можно определить по разности времён сигналов на двух концах стрипа.

-200

-400

200

400

The real coordinate, mm

0

100

_600

10

600

Выделение позитронного кластера

- В позитронный триггер входит не только сигнал от позитрона, но и сигналы от аннигиляционных гамма-квантов.
- Необходимо выделить часть сигнала, относящуюся к позитрону позитронный кластер.
- Стрип с максимальным энерговыделением + ближайшие к нему стрипы.
- Между стрипами кластера не должно быть стрипов без энерговыделения.
- Сигналы в соседних стрипах должны быть достаточно близко друг к другу (с учётом продольной координаты).

Визуализация позитронного триггера одного из событий; выделенные стрипы — позитронный кластер, 4-конечные звёзды — продольные координаты.

Интеграл позитронного кластера (моноэнергетические нейтрино)

Интеграл позитронного кластера

Различные распределения для разных топологий: вероятно, недостаточно эффективное разделение позитрона и гаммаквантов.

$$f(x; A, x_0, \sigma_1, \sigma_2) = \begin{cases} A \exp\left(-\frac{(x - x_0)^2}{2\sigma_1^2}\right), x < x_0, \\ A \exp\left(-\frac{(x - x_0)^2}{2\sigma_1^2}\right), x \ge x_0 \end{cases}$$

Энергетическое разрешение

- Распределения интегралов позитронных триггеров для моноэнергетических нейтрино от 3 до 11 МэВ аппроксимировались несимметричной функцией Гаусса.
- По результатам подгонки была получена грубая оценка энергетического разрешения детектора:

$$\frac{\sigma_E}{E} = \frac{18\%}{\sqrt{E \text{ [MB]}}} \oplus 2,0\%.$$

Заключение

- •Была написана программа, которая на основе Монте-Карло создаёт модель сигнала детектора.
- •Был разработан алгоритм для выделения среди сигналов позитронного кластера.
- •По результатам анализа была получена грубая оценка энергетического разрешения детектора (по отношению к энергии позитрона):

$$\frac{\sigma_E}{E} = \frac{18 \%}{\sqrt{E \text{ [M]}}} \oplus 2,0 \%.$$

•Анализ полученных данных указывает на недостаточно эффективное отделение позитрона и гамма-квантов. В дальнейшем планируется усовершенствование алгоритма.

Моделирование сигнала

Монте-Карло: — Бинарный файл:

•№ сработавшего фотоумножителя;

•величина зарегистрированного сигнала;

•момент времени.

•Разделён на записи.

•Каждая запись хранит:

• время начала записи;

∘ № стрипа;

 2 оцифрованных сигнала с 2 концов стрипа.

•Частота оцифровки — 125 МГц.

•Длительность записи — 512 нс.

Каждый зарегистрированный фотон создаёт импульс, описывающийся выражением $f(t) = A_0 \exp(3(1 + \ln \xi - \xi)),$ $\xi = \frac{t - t_0}{3\tau},$

Maximum position

Sigma

Sigma, i.u.