

Выпускная квалификационная работа бакалавра: Разработка сцинтилляционного спектрометра для детектирования реакторных антинейтрино

Научный руководитель: <u>Д.В. Попов^{1,2}</u> Исполнитель: <u>Р.Р. Биктимиров^{1,2,*}</u> ¹НИЦ «Курчатовский институт», Москва, Россия ²Национальный исследовательский ядерный университет «МИФИ», Москва, Россия *Biktimirov_RR@nrcki.ru

национальный исследовательский центр «**курчатовский институт**»

Цель:

Разработка сцинтилляционного спектрометра для детектирования реакторных антинейтрино.

Задачи:

- Определение спектрометрических характеристик и сравнение по ним между собой пластиковых сцинтилляторов;
- Определение спектрометрических характеристик и сравнение по ним между собой вакуумных ФЭУ;
- Подбор оптимальной конфигурации блока модульного детектора реакторных антинейтрино.

- <u>Фундаментальные</u> исследования: исследование нейтринных осцилляций, определение иерархии масс нейтрино, поиски новой физики (реакторная антинейтринная аномалия, "bump effect").
- <u>Прикладное</u> приложение: проведение независимого мониторинга состояния и состава топлива ядерного реактора, определение мощности реактора и дистанционный контроль его энерговыработки.

<u>1 деление:</u>

- выделение энергии ~ 200 МэВ;
- рождение ~ 6 $\overline{\nu}_e$.

Основной вклад в рождение $\overline{
u}_e$:

²³⁵U, ²³⁸U, ²³⁹Pu и ²⁴¹Pu.

Для ядерного реактора <u>мощностью</u> $P = 3 \ \Gamma B T$: $N_{\text{делений}} = \frac{3 \ \Gamma B T}{200 \ \text{M} \Rightarrow B} \approx 10^{20} [\text{c}^{-1}] \Rightarrow N_{\nu} \approx 10^{21} [\text{c}^{-1}].$

Ядерный реактор – самый <u>интенсивный</u> искусственный источник \overline{v}_e .

В 1956 г. Райнес и Коуэн экспериментально подтвердили существование нейтрино по реакции **обратного бета-распада (ОБР)** $\overline{\nu}_e + p \rightarrow n + e^+$. С 1956 г. и по настоящее время реакция <u>ОБР широко используется</u> в экспериментах по физике реакторных антинейтрино.

Метод задержанный совпадений ОБР:

национальный исследовательский центр «Курчатовский институт»

6/17

Поглотитель нейтронов

Спектрометр:

пластиковый сцинтиллятор (полистирол с добавками п-терфенил и ПОПОП) размерами (700 × 50 × 50) мм, сигнал с которого снимается вакуумными ФЭУ с эффективным диаметром фотокатода 46,5 мм.

Блок детектора: сборка из 9 независимых спектрометров.

2 серии измерений:

- измерение зависимости отклика 17 ФЭУ от яркости светодиода при постоянном напряжении → рабочий диапазон амплитуд;
- измерение зависимости отклика 17 ФЭУ от напряжения при постоянной яркости светодиода → рабочий диапазон напряжений.

Рабочий диапазон амплитуд ФЭУ

НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ЦЕНТР «КУРЧАТОВСКИЙ ИНСТИТУТ»

Красная линия — ожидаемая зависимость: $D = k \cdot \mu$, где $D = \sigma^2$ — дисперсия, μ — среднее.

<u>Отклонение от линейности</u>: амплитуды сигналов — 600 мВ ~ 5000 номер канала.

Все дальнейшие измерения проводились в рабочем диапазоне амплитуд

Определен диапазон рабочих напряжений для каждого ФЭУ

- а свободный параметр.
- n -кол-во динодов = 10, k -постоянная $\in [0.7 - 0.9]$,

номер канала АЦП

Среднее,

5000

4500

4000

 γ^2 / ndf

- *U* подаваемое напряжение,
- где *µ* среднее кривой отклика ФЭУ,

$$\mu = \frac{a^n}{(n+1)^{kn}} \cdot U^{kn},$$

Подгонка эмпирическим законом:

3000 2500 2000 1500 500 900 950 1000 1050 1100 1150 1200 1250 Напряжение, Вольт

Относительное разрешение δ : $\delta = \frac{2.355 \cdot \sigma}{\mu}$, где σ – абсолютное разрешение.

Для каждого ФЭУ найдена область, в которой *δ*остается постоянной.

Í0/17

13.13 / 13

0.6496 ± 1.812e-05

Разброс средних значений относительных разрешений для 17 ФЭУ

Произведено измерение отклика 9 пластиковых сцинтилляторов на источник γ-излучения ¹³⁷Сs, который помещался в точку 35 см. Пластиковый сцинтиллятор обернут в диффузный отражатель для улучшения светособирания и уменьшения неоднородности.

Определение спектрометрических характеристик пластиковых сцинтилляторов

национальныи исследовательский центр «Курчатовский институт»

12/17

Модельный вид аппаратурной кривой пластикового сцинтиллятора S(Q)

3/17

$$S(Q) = \int_{0}^{E_{max}} S_{th}(E) \times N \cdot \frac{1}{\sqrt{2\pi} \cdot \sigma_E(E)} \cdot e^{-\frac{(E-kQ-b)^2}{2\sigma_E^2(E)}} dE,$$

где S_{th}(E) – спектр по энерговыделению, получаемый методом Монте-Карло;

Е — энергия; N — нормировка; k — коэффициент пропорциональности между

регистрируемой энергией *Е*_{рег.} и условным зарядом *Q* в линейном приближении:

 $E_{\text{per.}} = k \cdot Q + b$, где коэффициент b отвечает за смещение нуля по оси энергии; $\sigma_E(E) - c$

энергетическое разрешение:
$$\sigma_E(E) = E \cdot \sqrt{\alpha^2 + \frac{\beta^2}{E} + \frac{\gamma^2}{E^2}}$$
, где α — параметр,

обусловленный неоднородностью детектора; β определяется числом дошедших на

1-ый динод фотоэлектронов; *ү* — параметр шумов электроники.

национальный исследовательский центр «курчатовский институт»

Подгонка функцией отклика аппаратурной кривой пластикового СЦ

Определение края комптоновского распределения $Q_{\rm края}$ и энергетического разрешения σ_E .

Аппаратурная кривая схемы совпадений для определения края комптоновского распределения П

Проверка корректности определения края комптоновского распределения функцией отклика детектора.

4/17

НАЦИОНАЛЬНЫЙ

Серьезных отличий между сцинтилляторами не выявлено.

НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ЦЕНТР «КУРЧАТОВСКИЙ ИНСТИТУТ»

16/17

min разброс спектрометрических характеристик спектрометров

В данной работе произведено сравнение органических пластиковых сцинтилляторов и вакуумных ФЭУ – основных компонент будущего детектора реакторных антинейтрино – по их спектрометрическим характеристикам:

- найден предел на амплитуды сигналов ФЭУ (до 600 мВ) и рабочий диапазон подаваемого напряжения питания (от 950 до 1150 В);
- разработана методика определения спектрометрических характеристик органических пластиковых сцинтилляторов;
- определен разброс спектрометрических характеристик пластиковых сцинтилляторов и ФЭУ, предложена методика минимизации данного разброса для сборки спектрометров на их основе.

- Выступление на XI Всероссийском с международным участием Молодежном научном форуме "OpenScience 2024" (с публикацией сборника тезисов), 13-15 ноября 2024 года, г. Гатчина;
- Выступление на XVIII Курчатовской междисциплинарной молодежной научной школе (с публикацией сборника аннотаций докладов), 27-30 мая 2025 года, г. Москва.

Спасибо за внимание!

национальный исследовательский центр «КУРЧАТОВСКИЙ ИНСТИТУТ»

Зависимость отклика ФЭУ от напряжения

Напряжение, Вольт

национальный исследовательский центр «**курчатовский институт**»

Аппаратурные кривые спектрометра для ¹³⁷Сs (синяя), ⁶⁰Со (зеленая) и ²²Na (красная)

НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ЦЕНТР

Г

20

30

40

Без отражателя

Тайвек + майлар на торце

•

60

Майлар

Тайвек

50

Е

Дополнительные слайды: спектры эмиссии сцинтиллятора и поглощения ФЭУ

национальный исследовательский центр «**курчатовский институт**»

Спектр высвечивания пластикового сцинтиллятора

Спектр поглощения ФЭУ, нормированный на квантовую эффективность

Дополнительные слайды: спектры позитронов ОБР от делящихся изотопов

Дополнительные слайды: доли делений для типичной кампании реактора типа ВВЭР

национальный исследовательский центр «курчатовский институт»

Таблица 1.2 — Различные методы детектирования реакторных $\bar{\nu}_e$ [37]. СС (NC) обозначает взаимодействие по заряженному току (нейтральному току). Сечение усреднено по всему спектру энергии $\bar{\nu}_e$. N и Z — число нейтронов и протонов в ядре рабочего вещества соответственно. Для этих оценок предполагается, что доли деления составляют 58%, 29%, 8% и 5% для ²³⁵U, ²³⁹Pu, ²³⁸U и ²⁴¹Pu соответственно.

Реакция	Тип	Сечение реакции	Порог
	взаимодействия	$(10^{-44}~{ m cm}^2/{ m деление})$	(МэВ)
$\bar{\nu}_e + p \rightarrow e^+ + n$	CC	~ 63	1.8
$\bar{\nu}_e + d \rightarrow n + n + e^+$	CC	~1.1	4.0
$\bar{\nu}_e + d \to n + p + \bar{\nu}_e$	NC	~ 3.1	2.2
$\bar{\nu}_e + e^- \rightarrow \bar{\nu}_e + e^-$	$\rm CC/NC$	$\sim 0.4 \times Z$	0
$\overline{\bar{\nu}_e + A \to \bar{\nu}_e + A}$	NC	$\sim 9.2 \times N^2$	0

37. *Qian X.*, *Peng J.-C.* Physics with reactor neutrinos // Reports on Progress in Physics. — 2019. — Vol. 82, no. 3. — P. 036201.

национальный исследовательский центр «курчатовский институт»

Таблица 1.3 — Различные процессы, используемые для детектирования нейтронов отдачи для реакции ОБР. Перечислены каналы обнаружения и соответствующие сечения захвата для тепловых нейтронов. В скобках приведена энергия, уносимая γ -квантами. В реакциях с Cd и Gd образуется большое количество γ -квантов, поэтому для данных реакций в скобках указана суммарная уносимая энергия γ -квантами.

Мишень	Реакция	Сечение реакции (барн)
		для теплового нейтрона
Н	$n + p \rightarrow d + \gamma \ (2.2 \text{ M} \Rightarrow B)$	~ 0.33
³ He	$n + {}^{3}\text{He} \rightarrow p + {}^{3}\text{H} + 0.764 \text{ M} \Rightarrow B$	~ 5300
⁶ Li	$n+{}^{6}\text{Li} \rightarrow \alpha+{}^{3}\text{H}+4.8 \text{ M} \Rightarrow B$	~ 950
¹⁰ B	$n + {}^{10}\text{B} \rightarrow {}^{11}\text{B}^*$	~ 3860
	$^{11}\text{B}^* \rightarrow \alpha + ^7\text{Li} + 2.79 \text{ M} \Rightarrow \text{B}, 6\%$	
	$^{11}B^* \rightarrow \alpha + ^{7}Li + \gamma (0.48M \Im B) + 2.31 M \Im B, 94\%$	
$^{113}\mathrm{Cd}$	$n + {}^{113}\text{Cd} \rightarrow {}^{114}\text{Cd} + \gamma \ (\sum E_{\gamma} = 9.04 \text{ M} \Rightarrow B)$	~ 20600
Gd	$n + {}^{155}\text{Gd} \rightarrow {}^{156}\text{Gd} + \gamma \ (\sum E_{\gamma} = 8.5 \text{ M} \Rightarrow B)$	$\sim\!61000$
	$n + {}^{157}\text{Gd} \rightarrow {}^{158}\text{Gd} + \gamma \ (\sum E_{\gamma} = 7.9 \text{ M} \Rightarrow B)$	$\sim \! 256000$