

ВЫПУСКНАЯ КВАЛИФИКАЦИОННАЯ РАБОТА БАКАЛАВРА «ВРЕМЕННОЕ РАЗРЕШЕНИЕ 32-КАНАЛЬНОГО МИНИПЭТ НА ОСНОВЕ ДЕТЕКТОРОВ GAGG-SIPM»

Научный руководитель: Дубинин Филипп Андреевич Студент: Козлов Андрей Александрович Б21-102

Москва 2025

Введение

Позитронно-эмиссионный томограф (ПЭТ) является современной ядерно-физической установкой, применяемой в медицине в диагностических целях. Одним из ключевых параметров ПЭТ является временное разрешение установки, позволяющее локализовать точку аннигиляции.

Для улучшения качества изображения, получаемого с 32-канального макета миниПЭТ, созданного в НИЦ «Курчатовский Институт», необходимо измерение его временного разрешения.

Рис. 1

Цель работы

Измерение временного разрешения макета миниПЭТ на основе детекторов GAGG-SiPM

Задачи:

- Определить оптимальные параметры анализатора PETIROC2A для измерения временного разрешения
- Собрать двухканальную установку для оценки временного разрешения на основе электроники макета миниПЭТ
- Получить значение временного разрешения для 32 каналов миниПЭТ

Макет ПЭТ

Рис. 2 – Экспериментальная установка

Определение оптимальных параметров анализатора PETIROC2A

Цель: получить наилучшее энергетическое разрешение при изменении параметров платы

К настраиваемым параметрам платы относятся:

- Порог в канале «Time»
- Ёмкости конденсаторов на усилителе-формирователе Cin и Cf
- Персональные пороги для каждого из 32 каналов

Рис.3 Схематическое изображение элементов тестовой платы Petiroc2A

нияу

NCDV

Определение оптимальных параметров платы для GAGG-SiPM

Варьировались вручную параметры Cin и Cf, влияющие на ёмкости на усилителе-формирователе.

Charge measurement

Рис. 4 – усилительформирователь По результатам измерений различных конфигураций Cin и Cf для детекторов GAGG-SiPM были получены следующие оптимальные параметры и наилучшее энергетическое разрешение:

- Cin = 2.5 ⊓Ф
- Cf = 0.4 ΠΦ
- Time Threshold = 470 y.e.
- δE = (13.4 ± 0.4)% для 511 кэВ

Дальнейшие измерения проходили при данной конфигурации.

Измерение временного разрешения двухканальной установки с детекторами GAGG-SiPM

Цель: определить временное разрешение двухканальной установки

Изучаемая реакция:

Рис. 5 – схема эксперимента по определению временного разрешения

Необходимо изучить распределение разности времён регистрации гаммаквантов в каналах для определения временного разрешения

Измерение временного разрешения двухканальной установки

Десятичный логарифм числа событий Entries 602200 10⁵ Mean 81.06 Std Dev 115.7 10⁴ 03 10² 200 600 400 800 1000 Номер канала

Для определения временного разрешения производился отбор событий, отвечающих пику 511 кэВ на зарядовом спектре

Зарядовая гистограмма канала 5 при 29 В

Рис. 6 – зарядовая гистограмма канала 5 при 29 В

нияу

Измерение временного разрешения двухканальной установки GAGG-SiPM

Рис. 7 – гистограмма разности времён регистрации исследуемых каналов для 29 В Цена канала – 37 пс

$TR = rac{2.35\sigma * 37 \text{nc}}{\sqrt{2}}$		
Рабочее напряжение, В	Временное разрешение, нс	
30	1.10 ± 0.05	
29	1.18 ± 0.04	
28	1.50 ± 0.04	
27	1.83 ± 0.06	

Таблица 1 – зависимость временного разрешения детекторов GAGG-SiPM от рабочего напряжения нияу

Измерение временного разрешения

Рис. 8 – гистограмма разности времён регистрации исследуемых каналов для 28 В

При понижении напряжения наблюдается смещение и размытие пика

Рис. 9 – гистограмма разности времён регистрации исследуемых каналов для 27 В

НИЯУ

исри

Измерение временного разрешения двухканальной установки с детекторами LYSO-SiPM Аналогично были определены параметры PETIROC2A, отвечающие наилучшему энергетическому разрешению установки LYSO-SiPM

Результаты подбора параметров:

- Cin = 1.25 пФ
- Cf = 0.3 πΦ
- Time Threshold = 470 y.e.
- δE = (11.4 ± 0.5)% для 511 кэВ

Схема эксперимента

Рис. 10 – схема эксперимента по определению временного разрешения для детекторов LYSO-SiPM

нияу

CDV

Измерение временного разрешения двухканальной установки LYSO-SiPM

Рис. 11 – гистограмма разности времён регистрации исследуемых каналов для 29 В

$TR = rac{2.35\sigma * 37 \text{nc}}{\sqrt{2}}$		
Рабочее напряжение, В	Временное разрешение, пс	
29.5	311 ± 6	
29	269 ± 6	
28	317 ± 7	
27	537 ± 12	

Таблица 2 – зависимость временного разрешения детекторов LYSO-SiPM от рабочего напряжения

Измерение временного разрешения 32-канального макет ПЭТ

Измерения проводились при напряжении 29 В и оптимальных для детектора GAGG-SiPM параметрах PETIROC2A

> Источник титан-44 в центре кольца ПЭТ

В ходе обработки результатов измерений учитывались различия в энергетических спектрах каждого из 32 каналов

Рис. 12 – макет ПЭТ в светозащитном чехле

Измерение временного разрешения макета ПЭТ

Рис. 13 – гистограмма разности времён регистрации гамма-квантов в противоположных каналах ПЭТ при напряжении 29 В

TR = 1.82 ± 0.09 нс

Наблюдается увеличение ширины гистограммы в сравнении с двухканальной установкой – причиной этому могут являться отклонения в значениях среднего и ширине у разных пар каналов

Заключение

- Для макета ПЭТ были определены оптимальные параметры платы PETIROC2A для детектора GAGG-SiPM Onesemi FC 30035. Наилучшее энергетическое разрешение составило 13.1 ± 0.3 %
- Было определено временное разрешение двухканальной установки с детекторами GAGG-SiPM. Лучшее временное разрешение было достигнуто на напряжении в 30 В и составило:

TR_{GAGG}= (1.10 ± 0.05) нс

 Были определены оптимальные параметры PETIROC2A для детекторов LYSO-SiPM. Для двухканальной установки с данными детекторами наилучшее временное разрешение было достигнуто при напряжении 29 В и составило:

TR_{LYSO} = (269 ± 6) пс

 Для напряжения 29 В было определено временное разрешение 32канального макета миниПЭТ:

TR_{PET} = (1.82 ± 0.09) HC

Спасибо за внимание!

Дополнительный слайд Nº1

Analogue outputs (2) 🔕 Power supply regula Bias voltage test points ISB Digital **FPGA** ΩW 32 inputs PETIROC2A I/Os TRIGE 2 FPGA's output

Тестовая плата Petiroc2A (вид сверху)

1.VCC_Selection – переключатель режима питания микросхемы

2.Коннектор для подачи питания на плату (6 V)

3.Регуляторы питания

4.Тестовые точки подключения для ПЛИС (программируемой логической интегральной микросхемы)

Дополнительный слайд Nº2

Метод измерения времени анализатором PETIROC2A

Дополнительный слайд Nº3

Дополнительный слайд №4

Дополнительный слайд №5

	LYSO(Ce)	GAGG(Ce)	LaBr₃(Ce)
Плотность, г/см ³	7.2	6.6	5.1
Эффективный Zeff (атомный номер)	54	54.4	50
Максимум спектра высвечивания, нм	410	530	380
Время высвечивания, нс	40	90 (90%) 255 (10%)	16
Световыход, фотоны/кэВ	32	>50 (заявленное значение)	61
Гигроскопичность	-	-	Значительная
Наличие собственного фона	+	-	+

Основные характеристики сцинтилляторов LYSO(Ce), GAGG(Ce), LaBr3(Ce)

Дополнительный слайд №6

Характеристики SiPM OneSemi FC-30035		
Размер сенсора	3х3 мм	
Размер ячейки	35 мкм	
Напряжение пробоя	24.2-24.7 B	
Длина волны максимума эффективности	420 нм	
Усиление	3x10 ⁶	
Темновой счёт	300-860 кГц	