Выпускная квалификационная работа на тему: Квантовый подход к описанию угловых моментов осколков в делении ядер

> Студент: Мико С. Научный руководитель: д.ф.-м.н., проф. Барабанов А. Л.

НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ЯДЕРНЫЙ УНИВЕРСИТЕТ «МИФИ»

НИЯУ МИФИ

Оглавление

-] Постановка проблемы
- 2 Важность
- (3) Цель исследования
 - 4 Квантовое описание состояния ядра
- 5 Распределение по К1
- 6 Распределение по L
 - 7 Заключение
 - 8 Приложение
 - 🦻 Источники

Постановка проблемы

Рис. 1: до деления (а) и после деления (б)

Постановка проблемы

- Как фрагменты, образующиеся при ядерном делении, приобретают свои собственные спины S_H и S_L, и какие механизмы отвечают за генерацию относительного орбитального момента L этих фрагментов?
- Из эксперимента следует, что спиральность K_1 и K_2 очень маленькие, и возникает проблема почему они такие.

Важность

- Угловой момент играет важную роль в ядерном делении, особенно в понимании испускании гамма кванты.
- Когда происходит деление, фрагменты находятся в возбужденном состоянии и освобождают энергию возбуждения, испуская 0-2 нейтрона и 1-3 гамма кванты, каждый из которых несет около 2 единиц углового момента.
- Особый интерес представляет спонтоное деление ядра ${}^{252}Cf$, так как его спин равен нулю и следовательно после деления $\vec{L} + \vec{S}_H + \vec{S}_L = 0$ и $K_1 = -K_2$

Цель исследования

Цель

Квантово механическое рассмотрение задачи с учётом принципа неопределённости Гейзенберга и установление связи между величинами, которые не являются одновременно измеримыми.

Угловые моменты в делении ядер

Рис. 2: до деления (а) и после деления (б)

Квантовое описание состояния ядра

- В квантовой механике важно понимать ограничения одновременного измерения физических величин, такие как принцип неопределенности Гейзенберга, который гласит, что распределение одной величины определяет распределение другой величины.
- Сушествуют 3 наиболее важных набора коммутирующих операторов и соответствующих им собственных векторов (записаны в краткой форме, указаны только различающиеся квантовые числа):

$$\begin{split} \hat{J}^2, \hat{M}, \hat{S}_H^2, \hat{S}_L^2, \hat{F}^2, \hat{\vec{L}}^2 & |F, L\rangle \\ \hat{J}^2, \hat{M}, \hat{S}_H^2, \hat{S}_L^2, \hat{F}^2, \hat{K} & |F, K\rangle \\ \hat{J}^2, \hat{M}, \hat{\vec{S}}_H^2, \hat{\vec{S}}_L^2, \hat{K}_1, \hat{K}_2 & |K_1, K_2\rangle \end{split}$$

Здесь $M \equiv J_z$

Квантовое описание состояния ядра

Для простоты рассмотрим случай спонтаного деления ^{252}Cf . В этом случае начальный спин ядра материи J = 0, F = L и $K_1 = -K_2$

$$L, K = 0 \rangle = \sum_{K_1} C_{S_H K_1 S_L - K_1}^{F0} |K_1, -K_1\rangle$$
(1)
$$\langle L, 0 | \Psi \rangle = \sum_{K_1} C_{S_H K_1 S_L - K_1}^{L0} \langle K_1, -K_1 | \Psi \rangle$$
(2)

Это и есть связь между амплитудой обнаружения орбитального момента L и амплитудой обнаружения спиральности K_1 причем $K_2 = -K_1$

Распределение по К1 и L

- Эксперименты [3, 4] показывают, что в распределениях по K₁ и K₂ доминируют малые значения. т.е спины осколков направлены поперёк оси деления.
- Предлагается узкое распределение $P(K_1)$ спиральности для фрагментов деления.(принято $S_H = 6\hbar$ и $S_L = 5\hbar$)

$$P(K_1) \sim \exp\left(-\frac{K_1^2}{2\sigma_{K_1}^2}\right) \tag{3}$$

• В работах [1, 2] принято, что распределение угловых моментов, включая спин и орбитальный момент, является гауссовским.

Распределение по к1

Рис. 3: Распределение Р(К1) спиральности осколька деления

Мико С.

24 Июнь 2025

æ

Распределение по L

Взяв квадрат модулей выражения (2) получится соответствующая связь между вероятностей.

$$P(L) = |\langle L, 0 | \Psi \rangle|^2 = \sum_{K_1} \left(C_{S_H K_1 S_L K_2}^{L0} \right)^2 P(K_1)$$
(4)

Здесь учтено что, амплитуды $\langle K_1, -K_1 | \Psi \rangle$ являются случайными комплексными величинами с ненаправленными фазами и статистической независимостью. В этом случае среднее значение перекрёстных (интерференционных) членов обнуляется, и остаётся только диагональная сумма

Распределение по L

Рис. 4: Распределение P(L) орбитального момента

13/22

- Фрагменты появляются с угловыми моментами, которые почти перпендикулярны направлению их относительного движения, что приводит к высокому компенсирующему орбитальному угловому моменту (в случае ядра калифорния).
- Разделение фрагментов включает только колебательные и изгибные вращательные режимы, которые способствуют образованию значительного углового момента.
- Предлагается гаусовское распределение P(L) орбитального момента, которое следует вышеизложенным фактам в следующей форме:

$$P(L) \sim \exp\left(-\frac{(L-\mu)^2}{2\sigma_L^2}\right) \tag{5}$$

14/22

Рис. 5: Распределение P(L) орбитального момента

- N -	free of	C
- IV	гико	U.

24 Июнь 2025

Аналогично (см. слайд 9) обратная связь между амплитудой обнаружения орбитального момента L и амплитудой обнаружения спиральности K1 есть:

$$|K_1, -K_1\rangle = \sum_L C_{S_H K_1 S_L - K_1}^{L_0} |L, K = 0\rangle$$
 (6)

Распределение по спиральности осколка K_1 может быть получено взяв квадрат модуля выражения (6).

$$P(K_1) = |\langle K_1, -K_1 | \Psi \rangle|^2 = \sum_L \left(C_{S_H K_1 S_L K_2}^{L0} \right)^2 P(L)$$
(7)

Рис. 6: Распределение Р(К1) спиральности осколька деления

		0
- N/I	IARO	
	mo	

Заключение

- Получено соотношение между амплитудами, вероятностями образования орбитальных моментов и спиральностей
- Показано, что если распределение по спиральности является узким вблизи K = 0, то распределение по орбитальному моменту не будет гауссовским(противоречие с предложенным распределением углового момента в работе [1])
- Показано, что для получения узкого распределения (вблизи K = 0) спиральности фрагмента деления для случая ²⁵²Cf распределение орбитального момента должно иметь значительный максимум при $L \approx S_H + S_L$

Приложение

Распределение по К1 из гауссовского распределения по L

Рис. 7: Распределение P(L) орбитального момента как в работе [1]

Приложение

Распределение по К1 из гауссовского распределения по L

Рис. 8: Распределение P(K1) спиральности осколка деления по заданным гоуссовским распределением по L

			= *) < (*
Мико С.	НИЯУ МИФИ	24 Июнь 2025	20/22

Источники

- [1] A. Bulgac и др. "Fragment Intrinsic Spins and Fragments' Relative Orbital Angular Momen-tum in Nuclear Fission". B: *Phys. Rev. Lett.* 128.022501 (2022), c. 6.
- [2] Т. Døssing и др. "Angular momentum in fission fragments". В: *Phys. Rev. C* 109.034615 (2024), с. 15.
- [3] R. Vogt и J. Randrup. "Angular momentum effects in fission". B: *Phys. Rev. C* 103.014610 (2021), c. 11.
- [4] J.N. Wilson и др. "Angular momentum generation in nuclear fission". B: *Nature* 590.7847 (2021), с. 566—570.

Спасибо за внимание!

22/22

- ∢ 🗗 🕨