

Национальный исследовательский ядерный университет «МФИ» Кафедра №40 «Физика элементарных частиц»

Выпускная квалификационная работа магистра

Исследование состояний ядра ¹¹В в реакции $^{10}B(^{7}Li, ^{6}Li)^{11}B$

Студент Райдун С.К. гр. М23-112

Научный руководитель

к.ф.-м.н.

Научный консультант д.ф.-м.н.

Чернышев Б. А.

Демьянова А.С.

Актуальность работы

Аналог состояния Хойла: 8.56 МэВ 3/2⁻ядра ¹¹В

Состояние Хойла 7.65 МэВ 0+ядра 12С

MeV

9.00

8.00

3.00

2.00

1.00

3α

Целью работы является исследование состояний ядра ¹¹В.

Задачи работы:

- ***** Разработка программы для автоматизации обработки одномерных энергетических спектров.
- ✤ Получение угловых распределений для основного состояния и состояния 8.56 МэВ ядра ¹¹В.

• **Теоретический анализ** полученных угловых распределений с помощью оптической модели и метода искаженных волн.

4

Схема экспериментальной установки по измерению дифференциальных сечений продуктов реакции ⁷Li + ¹⁰B. Диаметры и расстояния между элементами установки приведены в миллиметрах

100 Ø3 Ø4 Ø4 300

Эксперимент

⁷Li + ¹⁰B

Полученные экспериментальные данные

Пример полученного двумерного спектра с помощью $\Delta E-E$ метода из реакции ⁷Li + ¹⁰В при $\Theta_{LAB} = 10,2^{\circ}$. Ось X - потери энергии вылетевших частиц в Е детекторе (в каналах), ось Y - потери энергии вылетевших частиц в ΔE детекторе (в каналах). Каждая гипербола отвечает за определенный канал реакции.

Пример полученного одномерного энергетического спектра при обработке гиперболы ⁶Li. Ось X – потери энергии вылетевших частиц (ΔE+E) в МэB, ось Y – число событий.

316

37.69

8.517

Программа для обработки одномерных энергетических ния спектров

Задача - уменьшение времени обработки экспериментальных данных. Возможность экспресс анализа данных на эксперименте.

Раньше – ручная обработка одномерных энергетических спектров с помощью программы Origin Pro.

Решение – автоматизация обработки одномерных энергетических спектров.

Программа для обработки одномерных энергетических ния спектров. Продолжение

Основной функционал программы:

- Автоматический расчет положений исследуемых энергетических состояний на спектре.
- Автоматическое фитирование энергетических состояний с помощью Гауссовых функций.
- Автоматическое получение величины дифференциального сечения.

Программа для обработки одномерных энергетических Спектров. Алгоритм работы программы

НИЯУ

Программа для обработки одномерных энергетических спектров. Расчет кинематики

Программа для обработки одномерных энергетических Спектров. Фитирование энергетического спектра

НИЯУ

MCDN

Программа для обработки одномерных энергетических спектров. Получение угловых распределений МИСРИ

Теоретический анализ полученных угловых распределений

Метод искаженных волн (DWBA)

 $T_{DWBA} = \int u_b^{(-)^*}(\mathbf{K}_b, \mathbf{r}_b) < \Psi_b \Psi_B |V| \Psi_a \Psi_A > u_a^{(+)}(\mathbf{K}_a, \mathbf{r}_a) d\mathbf{r}_a d\mathbf{r}_b,$ где $u_a^{(+)}$ и $u_b^{(-)}$ - волновые функции рассеяния во входном и выходном каналах, Ψ_i – волновые функции соответствующих состояний ядер во входном и выходном каналах реакции, \mathbf{K}_i – относительный импульс в канале.

 $\frac{d\sigma_{\alpha\beta}}{d\Omega} = \frac{\mu_{\alpha}\mu_{\beta}}{(2\pi\hbar^2)^2} \frac{\kappa_{\beta}}{K_{\alpha}} |T_{\beta\alpha}|^2$, μ_i - приведенная масса канала і, $T_{\beta\alpha}$ - амплитуда перехода из

< \Psi_B \V \Psi_B \V \Psi_A \Psi_A > - интеграл перекрытия с волновыми функциями взаимодействующих ядер (a,A) и ядер-продуктов (b,B), содержащий всю структурную информацию о ядре.

канала α в канал β

Теоретический анализ угловых распределений. Продолжение

 $<\Psi_{\rm b}\Psi_{\rm B}|V|\Psi_{\rm a}\Psi_{\rm A}>\sim I^{ab}_{lsj}(r)*I^{BA}_{lsj}(r)$

I^{ab}_{lsj}(r), I^{BA}_{lsj}(r) – формфакторы реакции для «**легкой**» (a = b + n) и «**тяжелой**» (B = A + n) систем.

 $I_{lsj}(r \to \infty) = N^{\frac{1}{2}}C_{lsj}kh_l(ikr),$

где k² = $\frac{2\mu e_{lsj}}{\hbar^2}$, μ – приведенная масса, e_{lsj} – энергия связи переданной частицы в данном состоянии ядра B(a). N – коэффициент, учитывающий антисимметризацию волновых функций.

NC²_{lsj} – асимптотический нормировочный коэффициент (АНК), эмпирическое значение которого можно получить из описания главного максимума реакции.

Теоретический анализ угловых распределений. Входной канал

Входной канал: ⁷Li + ¹⁰В

Теоретический анализ угловых распределений. Выходной канал

Выходной канал: ⁶Li + ¹¹В (⁶Li + ¹²С)

Определение параметров оптического потенциала из интегральных характеристик близкой системы (⁶Li + ¹²C)

Теоретический анализ угловых распределений. Основное состояние ядра ¹¹В

Теоретический анализ угловых распределений. Состояние 8.56 МэВ ядра ¹¹В

Найденные параметры оптического потенциала и АНК позволяют достичь описания главного максимума углового распределения для состояния 8.56 МэВ ядра ¹¹В

AHK = 0.26 φM⁻¹

Теоретический анализ угловых распределений. Радиальные зависимости формфакторов

Приведем основные результаты магистерской диссертации:

- 1. Разработана программа для автоматизации обработки одномерных энергетических спектров.
- **2.** Получены угловые распределения дифференциального сечения для ядра ¹¹В в основном состоянии и состоянии 8.56 МэВ из реакции ¹⁰В⁽⁷Li, ⁶Li)¹¹В.
- 3. Проведен теоретический анализ полученных угловых распределений.
- **4.** Показано, что волновая функция состояния 8.56 МэВ ядра ¹¹В имеет **большее** пространственное распределение по сравнению с волновой функцией основного состояния.

Это может являться дополнительным указанием на кластерную структуру состояния 8.56 МэВ ядра ¹¹В.

Материалы данного исследования будут представлены на конференции Ядро 2025. Устный доклад.

Национальный исследовательский ядерный университет

Спасибо за внимание!

- 1. A.N. Danilov, A.S. Demyanova et al., Physics of Atomic Nuclei 78, 777 (2015).
- 2. A.S. Demyanova, AIP Conf. Proc. 3020, 020002 (2024).
- 3. A. Ozawa, T. Suzuki, I. Tanihata, Nuclear Physics A 693, Issues 1 2 (2001).
- 4. N. K. Timofeyuk, Phys. Rev C 81, 064306 (2010).
- Stukalov, Sobolev et al. Study of the 6Li 0+ Excited State. Physics of Atomic Nuclei 87, (2025).

Радиальные зависимости формфакторов для ядер ⁶Li и ¹¹В [5]:

Сравнение радиальных зависимостей для: сплошная линия - переход ${^7Li(g.s) \rightarrow n + {^6Li(g.s.)},}$ пунктирная - ${^7Li(g.s) \rightarrow n + {^6Li(3.56.)},}$ штрихпунктирная - ${^{11}B(g.s) \rightarrow n + {^{10}B(g.s.)}}$

Приближенное уравнение для формфактора [5]:

$$(T_r - V_{lsj}(r) - e_{lsj})I_{lsj}(r) = 0,$$

где T_r – оператор кинетической энергии относительного движения передаваемой частицы и остова, $V_{lsj}(r)$ – эффективный потенциал в параметризации Вудса-Саксона, e_{lsj} – энергия связи переданной частицы в данном состоянии ядра В (а).

Описание главного максимума для основного состояния:

База данных легких ядер с массовыми числами А = 1 - 20:

		PhasePart	PhaseParticles					
			₽ phase_id	int	>			
		6	🗧 🖉 particle_name	varchar				
			ratio	int				
EnergyLevels						PhaseVol	PhaseVolumes	
Øid	int	· · · · · · · · · · · · · · · · · · ·				e id	int	
nucleus_name	varchar	>				nucleus name	varchar	
level_number	varchar					volume number	varchar	
excitation_energy	float					threshold operation	floot	
spin	float		Nuclei			threshold_energ	y noa	
parity	int		P nucleus name	varchar				
isospin	float	· · · · · · · · · · · · · · · · · · ·	atom mass	int				
width	float		protons	int				
			neutrons	int				
			mean may	floot				
			mass_mev	noat				
			mass_amu	float				

Учет фоновых событий:

Этап работы программы. Энергетический спектр с учетом фоновых событий. Ось Х - энергии вылетевших частиц, ось Ү - количество событий. Черным показан исходный спектр. Красный цвет отвечает за спектр с учтенным фоном. Зеленая кривая - фазовый объем.

Приложение

Учет фоновых событий:

$$C * E_1^{1/2} * \left[\frac{(M - m_1) * E_{cm}}{(M - E_1)} + 2 * \left(\frac{m_1 * m_p * E_p}{(m_p + m_t)^2} \right)^{1/2} * E_1^{1/2} \cos t - \frac{m_1 * m_p * E_p}{(m_p + m_t)^2} \right]^{\frac{3N - 8}{2}}$$

где E_p- энергия налетающей частицы, m_p - масса налетающей частицы, m_t - масса мишени, E₁ - энергия рассеянной частицы, m₁ - масса рассеянной частица, М - суммарная масса в выходном канале, E_{cm} - суммарная кинетическая энергия в выходном канале в с.ц.м., N - число частиц в выходном канале, t - угол рассеяния, C - подбираемая константа.

Этап работы программы. Определение положения энергетических уровней. Ось Х энергия вылетевшей частицы в МэВ, ось Ү - число событий

Перекалибровка энергетического спектра:

Приложение

Калибровочные кривые:

нияу СОИ

Интегральные характеристики упругого рассеяния ⁶Li +¹²C

Параметры оптической модели для упругого рассеяния ⁶Li +¹²C

E _{lab.} ,	V _R ,	W _S ,	W _D ,	J _∨ ,	J _₩ ,	σ _r ,
MeV	MeV	MeV	MeV	MeV fm ³	MeV fm ³	mb
59.8	277	14	17	435	137	1361
54.0	280	13	15	439	121	1333
50.0	285	12	13.8	447	111	1317

Интегральные характеристики потенциалов:

Параметры оптической модели для выходного канала

Результаты теоретического анализа

A+1(I ^p T,E')	(I , j)	-V,	R ,	а,	<r<sup>2>^{1/2},</r<sup>	NC ² ,	NC ² theor ,
, nA(lºT,E')		MeV	fm	fm	fm	fm ⁻¹	fm ⁻¹
¹¹ B(3/2 ⁻	(1, 3/2)	39.40	3.49	0.37	2.91	13.60	13.10
1/2,g.s.),							
n¹⁰B(3⁺0,g.							
s.)							
¹¹ B(3/2 ⁻	(1, 3/2)	25.40	3.40	0.30	3.62	0.26	-
1/2,8.56.),							
n¹⁰B(3⁺0,g.							
s.)							