Институт ядерной физики и технологий Кафедра №40 «Физика элементарных частиц»

Моделирование процесса ассоциативного рождения бозона Хиггса с одиночным топ-кварком на БАК

Научный руководитель: Гусейнов Н.А., к.ф-м.н.

Научный консультант: Бойко И.Р., к.ф.-м.н.

Студент: Дадашова А.Э.

Москва 2025

Мотивация и цели

<u>Цель</u>: методом Монте-Карло смоделировать события ассоциативного рождения бозона Хиггса с одиночным топ-кварком и соответствующих фоновых процессов для дальнейшего их использования в нейронных сетях.

<u>Мотивация</u>: поиск редкого процесса $pp \to tH$ на БАК с целью измерения комплексной фазы константы взаимодействия бозона Хиггса с топ-кварком и ее сравнение с теоретическими предсказаниями Стандартной Модели.

Диаграммы Фейнмана для процесса pp
ightarrow tH

Информация о генерации событий

PDF set: CT10 m(b) = 4.2 GeV m(t) = 172.5 GeV $Y_b^*m(b) = 4.2 GeV$ $Y_t^*m(t) = 172.5 GeV$

Генерация: MadGraph5_aMC@NLO 3.5.7 Адронизация: PYTHIA 8.313 Реконструкция струй: FastJet 3.4.3

Ограничения на события: p_T^{lead} > 27 GeV; p_T^{v,reco} ≥ 10 GeV; |η|^{lead} ≤ 2.7; 3 ≤ N^{b-jets} ≤ 4; |η|^{b-jet} < 2.4 Jets: anti-KT p_T^{min} = 20.0 GeV |η|^{max} = 5.0 R = 0.5

Информация о сгенерированных событиях

Процесс	Nevents	Сечение (фб)	N ^{sel}	Nweght
tHbq	22 000 000	12.45	2 567 765	202.08
tt	220 000 000	194 600.00	986 383	228 729.39
ttbb	65 979 470	4807.00	1 941 358	19 670.26
ttZ	22 000 000	34.10	2 532 704	545.80
ttH	22 000 000	103.40	2 948 179	1926.04
tZbq	22 000 000	31.37	2 336 142	463.02
ttW	22 000 000	212.20	157 993	211.82

N^{events} - число сгенерированных событий N^{sel} - число событий, прошедших отбор N^{weight} - число взвешенных событий

Реконструкция события

- Все события реконструируются как события сигнального процесса: pp o tHbq(H o bb, t o bl
 u).
- Струи реконструируются из адронов конечного состояния.
- Поперечный импульс нейтрино реконструируется как недостающий поперечный импульс струй.
- Продольная компонента импульса нейтрино восстанавливается из решения уравнения : $m_{l
 u} = m_W$.
- b-струи приписываются распаду топ-кварка или бозона Хиггса путем перебора всех комбинаций и выбора той из них, что дает массы m_t и m_H, ближайшие к номинальным.

В рамках гипотезы о том, что все события соответсвуют сигнальному процессу, реконструированы 52 кинематических переменных. Эти переменные были переданы нейронной сети, разделяющей сигнальный и фоновые процессы.

Инвариантная масса реконструированного бозона Хиггса для сигнального и фоновых процессов

Инвариантная масса реконструированного топ-кварка для сигнального и фоновых процессов

Передняя струя

Инвариантная масса реконструированного бозона Хиггса и центральной струи для сигнального и фоновых процессов

|Δη| между реконструированным топ-кварком и передней (тагирующей) струей для сигнального и фоновых процессов

Заключение

В ходе данной работы был сгенерирован сигнальный процесс ассоциативного рождения бозона Хиггса совместно с одиночным топ-кварком и соответствующих фоновых процессов со статистикой гораздо большей, чем в предыдущем этапе работы.

Дальнейший этап работы — генерация сигнального процесса и фоновых процессов с наибольшими сечениями с учетом NLO-поправок

BACK-UP

Neutrino reconstruction

$$m_W^2 = (p_{lead} + p_
u)^2$$
 $m_{conservation \, law \, of \, the \, Kervation \, the \, Kervation \, law \, of \, the \, Kervation \, the \, Kervation \, Kervation \, t$

$$E_T^{miss,x} = -\sum p_{ ext{charged lepton}}^x - \sum p_{ ext{jet}}^x \qquad E_T^{miss,y} = -\sum p_{ ext{charged lepton}}^y - \sum p_{ ext{jet}}^y$$

$$p_{
u,1} = Vec4(E_T^{miss,x}, E_T^{miss,y}, p_{z,
u}^+, \sqrt{E_T^{miss2} + p_{z,
u}^{+2}})$$
 two solutions for the neutrino momentum $p_{
u,2} = Vec4(E_T^{miss,x}, E_T^{miss,y}, p_{z,
u}^-, \sqrt{E_T^{miss2} + p_{z,
u}^{-2}})$

Algorithm of top-quark and Higgs boson mass reconstruction

χ^2 for the signal and background processes

Reconstructed masses of the top quark and Higgs boson for the signaling process

Tails in distributions of reconstructed Higgs boson and top-quark masses for the signaling process

Two-dimensional distributions on the reconstructed Higgs boson and top-quark masses

η and p_T Higgs boson for the signal and background processes

Distance $\mathbf{\eta}$ between top quark and Higgs boson for the signal and background processes

$|\Delta \phi|$ between top quark and Higgs boson for the signal and background processes

events with no non-b jets

FastJet vs SlowJet

Aplanarity, spherisity and Fox-Wolfram Moments

$$egin{aligned} M_{xyz} = egin{pmatrix} p_{xi}^2 & p_{xi}p_{yi} & p_{xi}p_{zi} \ p_{yi}p_{xi} & p_{yi}^2 & p_{yi}p_{zi} \ p_{zi}p_{xi} & p_{zi}p_{yi} & p_{zi}^2 \end{pmatrix} \end{array}$$

The individual eigenvalues are normalized and ordered such that

$$egin{aligned} \lambda_1 > \lambda_2 > \lambda_3 \ &\sum_i \lambda_i = 1 \ & igcap_i \end{aligned}$$

full momentum tensor

Fox-Wolfram Moments:

$$H_l = rac{\sum_{ij} p_T^i p_T^j P_l(\cos heta_{ij})}{(\sum_i p_T^i)^2}$$

Spherisity:
$$S=rac{3}{2}(\lambda_2+\lambda_3)$$

Aplanarity: $A=rac{3}{2}\lambda_3$

Aplanarity for the signal and background processes

Sphericity for the signal and background processes

First and Second Fox-Wolfram moment for the signal and background processes

Forward and Tagging jet

Distance in η between Higgs and Forward (Tagging) Jet for the signal and background processes

Invariant mass of Top-quark and Forward (Tagging) Jet for the signal and background processes

Invariant mass of Higgs and Forward (Tagging) Jet for the signal and background processes

Distance between b-jet with maximum p_T and Forward (Tagging) Jet for the signal and background processes

Distance between nearest b-jet and Forward (Tagging) Jet for the signal and background processes

Characteristics b-jet with maximum p_T for the signal and background processes

Characteristics other b-jets for the signal and background processes

Transverse momentum non-b-jet with maximum p_T for the signal and background processes

Leading leton

Distance between jets from W-bozon for the signal and background processes

Reconstructed masses of the top quark and Higgs boson for background processes

Название	Определение	
M_{3J}	Инвариантная масса трех струй с наибольшим p_T	
N_b	Количество струй, порожденных b-кварками	
$Sphresity_{all \ jets}$	Мера равномерности распределения струй в пространстве	
$Sphresity_{lnu}$	Мера равномерности распределения объектов в пространстве	
$A planarity_{all \ jets}$	Мера отклонения струй от одной общей плоскости	
$\Delta(\eta_{t,FWD})$	Разность псевдобыстрот топ-кварка и передней струи	
$A planarity_{lnu}$	Мера отклонения объектов от одной общей плоскости	
$\Delta(\eta_{t,H})$	Развность псевдобыстрот топ-кварка и бозона Хиггса	
$M_{t,H}$	Восстановленная масса топ-кварка и бозона Хиггса	
M_H	Восстановленная масса бозона Хигтса	
$fw { m mlnujet1}$	Первый момент Фокса-Вольфрама, составленный из импульсов объектов	
P_t^{FWD}	Поперечный импульс передней стру	
$M_{H,FWD}$	Инвариантная масса бозона Хигтса и передней струи	
$M_{H,cen.jet}$	Инвариантная масса бозона Хиггса и центральной легкой струи	
η^{FWD}	Псевдобыстрота передней струи	
χ^{min}	χ^{min} Качество (критерий χ^2) определения масс бозона Хигтса и топ-кварка	
M_t	Восстановленная масса топ-кварка	

Q_{lep}	Заряд лептона с наибольшим р _Т	
$\Delta(R_{qqW})$	Угол между струями от адронного распада W-бозона	
N_{nonb}	Количество струй, порожденных кварками, отличных от b-кварка	
fwm2	Второй момент Фокса-Вольфрама, составленный из импульсов стру	
RapGap_maxptb	Разность псевдобыстрот передней стру и b-струи с наибольшим p_T	
RapGap_closetb	Разность псевдобыстрот передней струи и ближайшей к ней b-струи	
$P_{nonb\ max}^t$	Наибольший поперечный импульс среди легких струй	
W_T_m	Поперечная масса всех струй	
M_{FWD}	Инвариатная масса передней струи и топ-кварка	
η_{lep}	Псевдобыстрота лептона с наибольшим p_T	
E_{b2}	Энергия третьей по поперечному импульсу b-струи	
$\Delta(\phi_{t,H})$	Разность азимутальных углов топ-кварка и бозона Хиггса	
HT_alljets	Алгебраическая сумма поперечных импульсов всех струй	
$\Delta(\eta_{H,FWD})$	_{FWD}) Разнвость псевдобыстрот бозона Хигтса и передней струи	
P_H^t	Восстановленный поперечный импульс бозона Хиггса	
P_{b0}^t	P_{b0}^t Поперечный импульс b-струи с наибольшим p_T	
P_{b1}^t	P_{b1}^t Поперечный импульс второй по p_T b-струи	
η_H	η _H Восстановленная псевдобыстрота бозона Хиггса	
η_{b1}	Псевдобыстрота второй по p_T b-струи	
M _{b0} Инвариантная масса передней струи и b-струи с наибольшим		