Измерение спектров анти- Σ^{\pm} -гиперонов с помощью электромагнитного калориметра PHOS эксперимента ALICE

Гордеев Павел

Научный руководитель: Блау Д. С.

Москва 2025

Цель и задачи

Цель

 Измерение спектров анти-Σ[±] гиперонов в pp и p–Pb столкновениях при энергии 5.02 ТэВ

Задачи

- Разработать метод реконструкции и идентификации антинейтронов с помощью электромагнитного калориметра PHOS
- Получить спектры анти-Σ[±] гиперонов и сравнить с имеющимися Монте-Карло моделями

Актуальность исследования

- Изучение выходов странных частиц в различных столкновениях изучались через К, Λ, Ξ и Ω, но не Σ
- Σ гипероны несут существенную долю странности (~¹/₃ от Λ) в событии и являются наглядным сигналом образования КГП
- Валидация Монте-Карло моделей и понимание механизмов образования Σ гиперонов
- Измерение корреляций N-Σ должно пролить свет на присутствие Σ гиперонов в нейтронных звездах и ограничение их Equation-of-State
- Однако, измерение трудная задача, так как в распадах присутствует нейтральные частицы, что требует калориметров высокого разрешения или использования метода конверсии фотонов (PCM)
- Разработка метода реконструкции антинейтрона

 $\Sigma^{+} = uus$ $m = 1189.37 \pm 0.07 \text{ MeV}/c^{2}$ $\Sigma^{+} \rightarrow p\pi^{0}(51.57 \pm 0.30) \%$ $\Sigma^{+} \rightarrow n\pi^{+}(48.31 \pm 0.30) \%$ $\bar{\Sigma}^{-} \rightarrow \bar{n}\pi^{-}$

$$\Sigma^{-} = \text{dds}$$

$$m = 1197.449 \pm 0.030 \text{ MeV}/c^{2}$$

$$\Sigma^{-} \rightarrow n\pi^{-} (98.848 \pm 0.005) \%$$

$$\bar{\Sigma}^{+} \rightarrow \bar{n}\pi^{+}$$

Детектор ALICE

- ITS, TPC основные детекторы, которые используются для реконструкции треков и идентификации заряженных частиц
- ITS (Inner Tracking System) центральный детектор, окружающий ионопровод
- TPC (Time-Projection Chamber) основной детектор в центральном барреле ALICE, предназначенный для трекинга и идентификации заряженных частиц
- PHOS (PHOton Spectrometer) электромагнитный калориметр

Отбор событий

- p-Pb и pp столкновения $\sqrt{s} = 5.02 \text{ TeV}$
- Minimum Bias триггер (V0A & V0C)
- $|Z_{vtx}| \le 10$ см
- Исключение pile-up
- INEL и NSD события
- MC и Data были проанализированы
- Отобранные события:

```
p-Pb Data: 2.7 \cdot 10^8
p-Pb MC: 2.0 \cdot 10^8
pp Data: 3.2 \cdot 10^8
pp MC: 4.0 \cdot 10^8
```


Идентификация антинейтронов в PHOS

Идентификация \bar{n} :

- Выделенная энергия при аннигиляции
- Нейтральность (CPV, Charged Particle Veto)
- Использование Time-of-Flight информации PHOS для восстановления импульса антинейтрона

6

Отбор треков и кластеров

- $E_{\rm clu} \ge 0.6 \, {\rm GeV}$
- $M02 > 0.2 \text{ cm}^2$
- $N_{\text{cells}} \ge 7$
- $CPV > 10\sigma$ (Charged Particle Veto)
- Дисперсионный отбор \bar{n} : $M02 \ge -M20 + 4$
- $0 < \text{TOF} t_{\gamma} < 150 \text{ ns}$ где t_{γ} это ТОГ фотона до PHOS ¹⁰⁰

• $|\eta| < 0.8$

Трек:

- ТРС dE/dx: 3σ полоса вокруг пионной линии
- Количество кластеров ТРС > 60

Топологические отборы

Доля различных типов кластеров

• После применения отборов доля антинейтронных кластеров возрастает до ~50%

Процедура выделение сигнала

- Применяя полученные отборы, были построены распределения инвариантных масс для пар трек (пи-мезон) и кластер в калориметре (антинейтрон)
- Получены Same Event и Mixed Event распределения

Спектры $\bar{\Sigma}$ в p-Pb столкновениях

- После получения выходов, спектр нормируется на эффективность реконструкции
- Систематические погрешности показаны прямоугольниками
- EPOS LHC и EPOS4 показывают наилучшее согласие, по сравнению с другими моделями

Спектры $\overline{\Sigma}$ в pp столкновениях

11

Отношение спектров $\bar{\Sigma}$

- Отношение спектров анти- Σ^{\pm} -гиперонов ожидается равным единице
- Для EPOS LHC наблюдается отклонение от единицы ввиду асимметрии между и и d кварками (была введена для воспроизведения данных LEP и NA49)

Отношение $p_{\rm T}$ -дифференциальных выходов

- Соотношения спектров различных видов адронов позволяют подробно изучать различные эффекты, такие как участие в радиальном расширении и более раннем или более позднем термодинамическом замораживании для данного вида адронов, вклад эффектов коалесценции
- Отношение р/π насыщается при высоких p_T в pp и p–Pb столкновениях. Отношение Λ/π демонстрирует похожий тренд в p–Pb столкновениях
- Отношение Σ/π растет до 3 GeV/с в p–Pb и, в меньшей степени, в pp столкновениях. Это может указывать на участие анти-Σ[±] гиперонов в радиальном коллективном расширении в p–Pb столкновениях

13

Отношение $p_{\rm T}$ -интегральных выходов

- Все модели, включая статистическую модель Thermal-FIST, воспроизводят измеренные интегральные выходы в пределах погрешностей в pp и p–Pb столкновениях
- Отношение Σ/Λ недооценивается динамическими моделями, но лучше описывается статистической Thermal-FIST моделью (Λ плохо описывается моделями)
- Отношение Σ/К лучше описывается динамической моделью и недооценивается моделью Thermal-FIST
- Эти наблюдения могут помочь в объяснении механизмов образования странности

Фактор ядерной модификации

- Измерен R_{pPb} для анти- Σ + гиперонов
- *R*_{pPb} сравнивается с опубликованными результатами для протонов, гиперонов с одним странным кварком (Λ) и гипероном с двумя странными кварками (Ξ)
- R_{pPb} для всех адронов согласуется в пределах погрешностей, зависимости от количества странных кварков обнаружено не было

 $R_{\rm pPb} = \frac{{\rm d}N_{\rm pPb}/dp_{\rm T}}{\langle N_{\rm coll}\rangle\,{\rm d}N_{\rm pp}/dp_{\rm T}}$

Заключение

- Впервые предложен метод реконструкции антинейтронов, который открывает новые переменные для исследований
- Реконструкция антинейтронов с использованием времени пролета позволяет восстанавливать импульсы вплоть до ~2 GeV/с с текущим временным разрешением PHOS
- Метод может быть использован для реконструкции ∑⁺ по ~100% каналу распада на антинейтрон и заряженный пион
- Измерены дифференциальные и интегральные выходы анти-Σ[±]-гиперонов в p-Pb и pp столкновениях @ 5.02 ТэВ
- Модели EPOS LHC и EPOS4 дают наилучшее согласие с данными
- Статистическая термальная модель описывает интегральные выходы анти-Σ[±]гиперонов в пределах погрешностей

Апробация результатов

- Gordeev, P., ALICE Collaboration. Antineutron Reconstruction and Identification in Electromagnetic Calorimeter. Phys. Atom. Nuclei 86, 827–831 (2023). <u>https://doi.org/10.1134/S1063778823050174</u>
- Gordeev, P., the ALICE Collaboration. Production of Baryons in p–Pb and pp Collisions at the LHC with ALICE. Phys. Atom. Nuclei 87 (Suppl 3), S432–S437 (2024). <u>https://doi.org/10.1134/S1063778824700996</u>
- Конференционная Gordeev, P., Production of Σ baryons as a function of multiplicity in pp collisions at the LHC with ALICE, EPJ Web Conf., 316 (2025) 03003, DOI: https://doi.org/10.1051/epjconf/202531603003

В процессе

- Коллаборационная статья CR2 пройден, следующий этап CERN review
- Планируется еще одна статья после конференции QFTHEP (не конференционная)

Спасибо за внимание!

PHOS

- PHOS высокогранулированный фотонный спектрометр на основе кристаллов PbWO4
- РНОЅ предназначен для исследования электромагнитного излучения горячей сильновзаимодействующей материи в ядро-ядерных столкновениях при высоких энергиях, а также для измерения спектров мезонов через их фотонные распады
- Может быть измерено время пролета (ТОГ) частицы, образующей кластер в РНОЅ

L - расстояние между вершиной взаимодействия и кластером в PHOS, м (~ 4.6 м) $m_{\bar{n}}$ - масса антинейтрона, 0.939485 GeV/ c^2 $t_{\rm TOF}$ - время пролета, с

Среднее значение и ширина сигнального пика

Эффективность реконструкции

Систематические погрешности

Source	Uncertainty (%) $\overline{\Sigma}^+ / \overline{\Sigma}^-$					
	pp			p–Pb		
$p_{\rm T}~({\rm GeV}/c)$	0.5-0.75	1-1.25	1.5-2	0.5-0.75	1-1.25	1.75-2
Shower shape	11.4/14.8			7.2/11.6		
CPV n_{σ}	3.9/2.7 2.5/5.1					
Minimum <i>E</i> _{clu}	13.6/10.5			11.0/13.6		
PHOS time response	4.9/5.1	5.5/5.8	9.4/8.9	5.5/4.1	7.9/6.5	11.5/14.6
Track $ \eta_{\text{max}} $	3.7/1.0	1.4/1.0	1.3/1.9	4.7/4.5	3.4/3.9	1.4/3.0
$\pi^{\pm} dE/dx$	0.4/2.2	0.4/2.1	0.5/2.1	1.7/1.7	0.8/1.9	0.5/2.0
Topological selections	2.5/8.8	1.6/4.9	1.3/5.3	6.9/18.2	5.4/13.4	3.2/6.2
Raw yield extraction	2.0/5.2	2.3/1.9	1.0/2.1	5.2/12.2	3.1/10.2	3.0/4.8
Material budget	4.5					
ITS-TPC matching efficiency	3.0					
Total	20.3/22.6	20.1/21.0	21.4/22.2	18.7/29.9	18.3/26.9	19.4/25.9

Интегральные выходы х10³

Specie	$\frac{dN}{dy} \pm (\text{stat.}) \pm (\text{sys.}) \pm (\text{extr.})$	EPOS4	EPOS LHC	PHOJET/DPMJET	PYTHIA 8	Thermal-FIST	
	pp collisions (INEL)						
$\overline{\Sigma}^+$	$18.1 \pm 0.5 \pm 4.0 \pm 0.7$	21.4 ± 0.2	18.441 ± 0.004	16.45 ± 0.05	17.71 ± 0.03	16.7	
$\overline{\Sigma}^{-}$	$18.3 \pm 0.7 \pm 4.7 \pm 0.7$	20.4 ± 0.2	14.735 ± 0.004	16.55 ± 0.05	17.77 ± 0.03	17.2	
	p-Pb collisions (NSD)						
$\overline{\Sigma}^+$	$75 \pm 3 \pm 16 \pm 3$	71.9 ± 0.8	74.1 ± 0.1	78.39 ± 0.05	_	63	
$\overline{\Sigma}^{-}$	$72 \pm 2 \pm 20 \pm 3$	73.8 ± 0.8	69.1 ± 0.1	78.47 ± 0.05	_	65	

Доля интегральных выходов вне диапазона измерения составляет приблизительно 16–24% в области низких $p_{\rm T}$ и 1–3% в области высоких $p_{\rm T}$ в pp столкновениях, и 8–14% в области низких $p_{\rm T}$ и 5–12% в области высоких $p_{\rm T}$ в p–Pb столкновениях Параметры Thermal-FIST: T = 148.69 ± 0.03 MeV, $\mu_{\rm B} = 0 \pm 0.09$ MeV и T = 147.31 ± 0.06 MeV, $\mu_{\rm B} = 0 \pm 0.2$ MeV для pp и p–Pb соотвественно

Отношение $p_{\rm T}$ -дифференциальных выходов

Монте-Карло модели

- DPMJET 3.0-5
- PYTHIA 8.2.10 with Monash 2013 tune
- PHOJET (DPMJET version 3.0-5)
- EPOS LHC
- EPOS4

Характеристика	DPMJET	EPOS LHC	EPOS4
Физическая основа	DPM (Dual Parton Model) + мини- джеты	Гибридная (партоны + гидродинамика)	Улучшенная гибридная модель
Ядерные эффекты	Glauber + DPS(Double Parton Scattering)	Glauber + shadowing + core-corona	Улучшенные nPDF + тройные рассеяния
Гидродинамика	Нет	3+1D гидродинамика	Улучшенная вязкость и EoS
Коллективные эффекты	Слабые	Сильные (v _n)	Ещё лучшее описание v _n
Применимость	Космические лучи, LHC (упрощенно)	LHC (оптимизирован)	LHC, будущие коллайдеры (FCC)

1. DPMJET (Dual Parton Model + Jet emissions)

Основа: Развитие модели Dual Parton Model (DPM) с включением мини-джетов.

Применимость: Высокие и сверхвысокие энергии (космические лучи, LHC).

Особенности в p-Pb:

- Ядерные эффекты: Использует Glauber-подход для моделирования множественных столкновений нуклонов внутри ядра.
- Множественные взаимодействия: Учитывает двойные партонные рассеяния (Double Parton Scattering, DPS).
- Генерация вторичных частиц: Основана на цепочках (strings), но без явного учета гидродинамической эволюции.

Ограничения:

- Нет динамического описания кварк-глюонной плазмы (QGP).
- Менее точен в области низких p_T по сравнению с EPOS.
- 2. EPOS LHC (версия, оптимизированная для LHC)

Основа: Гибридная модель (партонные ливни + гидродинамика).

Применимость: Оптимизирована для pp, pA, AA при энергиях LHC.

Особенности в p-Pb:

- Гибридный подход:
- Начальная стадия: партонные каскады + струны (Parton-Based Gribov-Regge Model).
- Промежуточная стадия: 3+1D гидродинамика (если плотность энергии достаточна).
- Финализация: адронизация через модель "core-corona" (ядро → гидродинамика, корона → струнная фрагментация).
- Ядерные эффекты:
- Учет "shadowing" (подавление партонных плотностей в ядре).
- Множественные взаимодействия через Glauber + партонные перерассеяния.
- Преимущества:
- Лучше описывает коллективные эффекты (например, v_n) в p-Pb.
- Учет QGP-подобных эффектов даже в малых системах.

3. EPOS4 (развитие EPOS LHC)

Основа: Усовершенствованная версия EPOS с улучшенной динамикой партонов.

Нововведения в р-Рb:

- Более точный учет начальных состояний:
- Улучшенное описание партонных распределений (NLO-коррекции).
- Более сложная модель PDF (nPDF).
- Гидродинамика:
- Улучшенная вязкость и уравнение состояния.
- Более точное описание границы между "core" и "corona".
- Множественные рассеяния:
- Включены тройные партонные взаимодействия.
- Преимущества перед EPOS LHC:
- Лучшее согласие с данными по множественности и р_т-спектрам.
- Более последовательное описание перехода pp \rightarrow pA $\xrightarrow{}$ AA.

Монте-Карло модели

Характеристика	PHOJET	PYTHIA 8 (Monash)	EPOS LHC	EPOS4
Физическая основа	DPM(Dual Parton Model) + реггеоны	Партонный шоверинг	Гибридная (партоны + гидро)	Улучшенная гибридная
Множественность	Занижает на LHC	Хорошо согласуется	Хорошо согласуется	Ещё лучше
Коллективные эффекты (v _n)	Нет	Слабые (только из MPI)	Есть (гидродинамика)	Улучшенные
Гидродинамика	Нет	Нет	Есть (3+1D)	Улучшенная
Вычислительная сложность	Низкая	Средняя	Высокая	Очень высокая
Оптимизация под LHC	Нет	Да (Monash tune)	Да	Да + новые улучшения

1. PHOJET

Основа: Комбинация партонных и реггеонных моделей (развитие Dual Parton Model). Применимость: Средние и высокие энергии (HERA, LHC). Особенности в pp:

- Реггеонная динамика: Доминирует при низких р_т.
- Множественные взаимодействия: Учитываются, но без детального тюнинга под LHC.
- Ограничения:
 - Нет современного партонного шаоwering (как в РУТНІА).
 - Плохо описывает данные LHC при высоких р_т.
 - Нет учета коллективных эффектов.

Использование: Устаревшая модель, но иногда применяется для фотон-адронных взаимодействий. 2. PYTHIA 8 (Monash 2013 tune)

Основа: Партонная каскадная модель + Lund string fragmentation.

Применимость: Основной генератор для pp-столкновений на LHC.

Особенности в рр:

- Партонный шоверинг: Точно рассчитывается в формализме DGLAP.
- Тюнинг Monash 2013: Оптимизирован под данные LHC (множественность, р_т-спектры).
- Множественные взаимодействия (МРІ): Учитываются, влияют на множественность.

Ограничения:

- Нет гидродинамики \rightarrow коллективные эффекты (v_n) слабые.
- Нет явного учета QGP-подобных эффектов.

Преимущества: Быстрый, хорошо проверенный, стандарт для LHC.

3. EPOS LHC

Основа: Гибридная модель (партоны + гидродинамика). Применимость: Оптимизирован для LHC (pp, pA, AA). Особенности в pp:

- Гибридный подход:
- Начальная стадия: партонные каскады + струны.
- Если плотность энергии высока 3+1D гидродинамика.
- Финализация: core-corona модель (ядро → гидродинамика, корона → струны).
- Коллективные эффекты:
- Может генерировать v_n даже в pp (из-за гидродинамики).
- Тюнинг: Под LHC данные (лучше РҮТНІА в низком р_т).

Ограничения:

- Вычислительно тяжелее РҮТНІА.
- Гидродинамика в pp спорна (не все согласны, что она нужна).

4. EPOS4

Основа: Улучшенная версия EPOS LHC.

Нововведения в рр:

- Улучшенный партонный шоверинг:
- Более точные начальные условия (NLO-эффекты).
- Гидродинамика:
- Улучшенная вязкость и уравнение состояния.
- Более точное разделение core-corona.
- Множественные взаимодействия:
- Учет тройных партонных рассеяний.

Преимущества перед EPOS LHC:

- Лучшее описание р_т-спектров и множественности.
- Более последовательная экстраполяция к рА и АА.