

МЕТОД ОЦЕНКИ РАБОТОСПОСОБНОСТИ ОПТИЧЕСКОГО И

ЭЛЕКТРОННОГО ТРАКТА ДЛЯ ПОДСИСТЕМЫ ВВС В ДЕТЕКТОРЕ SPD

A.V.Tishevsky on behalf of JINR-MEPhI BBC

LXXV Международная конференция «ЯДРО-2025. Физика атомного ядра и элементарных частиц. Ядерно-физические технологии»

1 июля 2025, Санкт-Петербург

Introduction

Outline

□ Introduction for BBC subsystem

R&D tests

- hardware
- method
- the comparing of the attachment techniques
- the scan by SGF length (comparing of SGF diameters)
- the scan by SGF length (comparing of WLS)
- test of full optical and electronic path
- the method of assembled sector fast check
- □ Prospects
- □ Conclusion

BBC assembling part

Proposal for reduced wheel prototype

The verification in the mass production process

- check the uniformity of the tiles see: A. Zakharov
- method for estimating the efficiency of an optical and electronic path

The method will allow us to check the path:

- immediately
- monitoring the change in the detector over time

CAEN FERS 52XX is an extendable high speed front-end readout system

DT5203 (picoTDC chip) DT5215 (Concentrator)

Hybrid mode (LG+ToT+ToA)

• **DT5202** (x2 Citiroc 1A chip)

Stand for BBC measurements

Schematic view of the LED

Diameters of SGF

The "FersRun" framework has been designed.

SiPM SensL 1x1 mm²

(MicroFC-10035 SMTPA)

This methods based on side glow fiber (SGF). In principle: the LED light transmitted along the SGF. We attached the WLS to SGF, and then the optical signal passes through the optical path and detected by SiPM.

(WLS <-> Clear Fiber <-> SiPM <-> DT5202 unit)

			non-participa	non-participating part	
Item no.	Diam-1.5, 2, 2.5, 3, 3.5, 4, 5, 6, 8, 10, 12, 14, 16, 18mm				
Item name	Solid core Side glow Optic fiber	Core			
Fiber core material	Methyl Methacrylate (MMA)				
Cladding material	Polytetrafluoroetylene(PTFE)(Telfon)	Cladding			
Jacket material	N	Gladuling	Led		
Core refractive index	1.55				
Cladding refractive index	1.50		(light)		
Refractive index Profile	Step	Core			
Wavelength range	350 -780nm	(). −Cladding			
Max bending radius	5X diameter	PVC Jacket			
Working temperature	-20 - 100°C				
Storage temperature	10-50 °C				

The comparing of the attachment techniques

1-st attachment technique

- The difference between the attachment techniques is at the range of 50-60%.
- The 2-nd method is a priority, both from the point of view of simplicity of attachment, and potentially with multi-channel connection. But increase of the light output is required.

2-nd attachment technique

The scan by SGF length (comparing of SGF diameters)

- There are edge effects. They are larger for 3mm fiber.
- Attenuation of light per meter for the SGF at the level of 30%.
- The signal difference between the 2mm and 3mm <u>diameters is **about 50%**</u>.

• <u>WLS Kuraray (Y11)</u> is approximately **130% effective.**

Test of full optical and electronic path

Kuraray (clear fiber) cable prototype with 8 channels connector

Channel-by-channel connector test

SensL 3x3 mm² (MicroFC-30035) to DT5202

- the correction showed a problem with polishing and a defect for the transparent fiber
- preparing to test the main options

8

The method of assembled sector fast check

1-st attachment technique

(parallel to WLS)

2-nd attachment technique

(perpendicular to WLS)

1-st attachment technique

2-nd attachment technique

random effect

• the problem with the connector

The methods of assembled sector check

- the signal is comparable to the mip
- different acquisition time
- perfect alternative of cosmic rays

Cosmic rays

Tests with SGF

The prospects

The techniques are sensitive to fibers contact areas

required

the tool for uniform illumination (combining all fibers into one connector)

the scan by SGF length (>2,5 m)

2-nd attachment technique

(perpendicular to WLS)

Small prototype wheel ~ 2,1 m Full size wheel

~ 5,0 m

The method can be useful for wheel prototype

- ✓ The method for estimating the efficiency of an optical and electronic path has been proposed.
- ✓ The possibility of increasing the light intensity was considered. The absorbed light of the Kuraray WLS is higher then Saint-Gobain Crystals WLS. The final solution is a matter of compromise between the diameter of the SGF.
- ✓ The possible method of express sector checking has been proposed. The signal is similar to minimum-ionizing particles (mips). The method is promising for evaluating the operability of the prototype and the BBC detector.

to do list:

- test of the main option of optical cable with transmission box;
- finalizing the method of express wheel check;

Thank you for the attention!

Backup

The hardware of BBC tests part

Calibration method (Led source)

DT5202 with CAEN LED Driver (SP5601)

Materials selection test part

Scintillator cover

Materials selection test part

Optical cement and WLS

Hits

SGC BCF92 Hits **OK-72** СКТНИ 3000 СКТН Б 2500 CKTN CKTN Fit parameters OK-72 2000 mark E mark B Mean, channels 263.7 340.3 378.4 1500 Rms, channels 212.6 240.7 265.4 1000 500 for Prototype 200 400 600 800 1000 1200tests 014, LG, channels **CKTN** 2²/ndf 2,658e-07/0 390 p0 390.5 ± 2.227 Channels p1 41.97 ± 0.9293 p2 13.41 ± 0.3138 360 Light collection peak 350 340 330 320 24 position on dependence of A component amount for

Kuraray Y-11 **OK-72** СКТН І 3000 СКТН Б 2500 CKTN CKTN Fit parameters OK-72 2000 mark E mark B Mean, channels 312.8 429.7 569.1 1500 Rms, channels 228.2 268.7 324.9 1000 for 500 Phase 1 tests 200 400 600 800 016, LG, channels

The results of tests of Kuraray WLS fiber and Saint-Gobain Crystals (SGC) WLS fiber with different types of cement are presented.

- **CKTN mark B** paired with <u>SGC WLS</u> fiber are the most appropriate candidates for prototype assembly tests.
- CKTN mark B paired with Kuraray WLS fiber are the most appropriate candidates for future **testbeam**.
- □ Datasheet ratio will be used and closely monitored for mass production.

2.6

optical cement.

3.4

3.6 Amount of composition A, %

Prototype assembling test

1-st sector prototype

Amplitude spectra of two sectors

There are 2 specific channels, but the debugging process of mass production continues. 2-nd sector prototype

The stable tiles were taken for following tests

Prototype assembling test

The 1-st step for working with the timing mode

ToT correlations

LG vs ToT (channel №3)

Correlation of energy deposition for 2 channels, as well as the time information for these channels.

• The calibration of the charge scale is required

The optical cable prototype (clear fiber)

Kuraray (clear fiber) cable prototype with 8 channels connector

The scan by SGF length

Simplified block diagram of the DT5202 FERS-5200 unit

Each channel has low (LG) and high (HG) gain preamplifiers providing a wide dynamic range.

Triggers of consecutive channels are sent to an AND logic operator (e.g. CH0&CH1, CH2&CH3, etc.). The 32 outputs are then sent to an OR logic operator.

