### MEPhI-VBLHE COLLABORATIVE WORKSHOP 2025











# Статус ВВС SPD в МИФИ: Тесты и измерения

А. М. Захаров\* НИЯУ МИФИ

## Рентгеновский сканер

Координатный столик на основе рентгеновской трубки включает в себя:

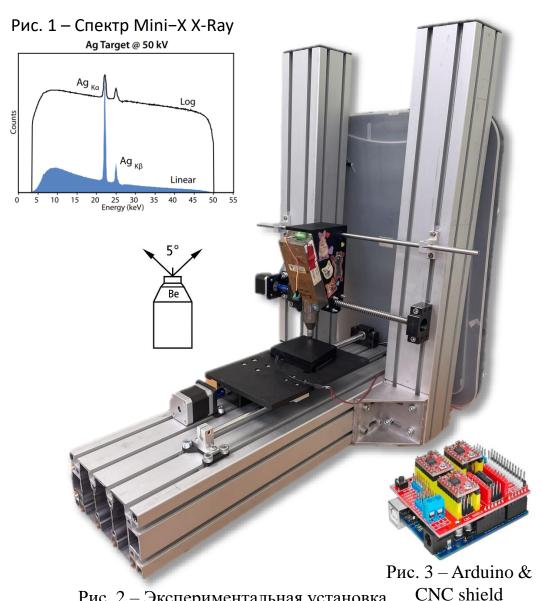
#### • AMPTEK Mini-X X-ray tube

Ag мишень,  $50 \text{ kV} / 75 \mu\text{A}$ , 2 мм коллиматор ( $5^{\circ}$  X-ray конус) на высоте ~ 3.5 мм от тайла

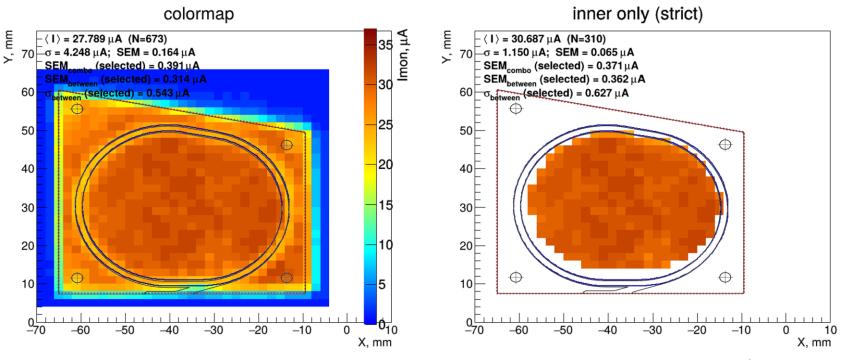
#### • NEMA 17 шаговый двигатель

Угловой шаг  $1.8^{\circ}$ , около 20 мкм разрешение (X и Y оси, механическое)

#### **Arduino and CNC Sheild**


Микроконтроллерная плата ДЛЯ автоматизации движения

#### **CAEN DT5202**


Источник питания A7585D с разрешением 1 мкA

#### Свинцовая защита

Светоизолирующий корпус



## Программное обеспечение



outer in tile (strict)  $\begin{array}{c}
(1) = 27.089 \,\mu\text{A} \,\,(\text{N=158}) \\
\sigma = 3.227 \,\mu\text{A}; \,\,\text{SEM} = 0.257 \,\mu\text{A} \\
\text{SEM}_{combo} \,\,(\text{selected}) = 0.415 \,\mu\text{A} \\
\text{SEM}_{between} \,\,(\text{selected}) = 0.184 \,\mu\text{A} \\
60 \,\,\text{Obtween} \,\,(\text{selected}) = 0.318 \,\mu\text{A}
\end{array}$ 

Рис. 1 – Пример программного обеспечения

- ➤ ПО примерным образом описывает «канавку» с волокном, и выделят интересующие нас регионы (ROI)
- ▶ В двух выделенных областях внешней и внутренней рассчитывается СКО, которое сигнализирует о скрытых дефектах и вносит вклад в итоговую погрешность

## Метод 1: Механические дефекты

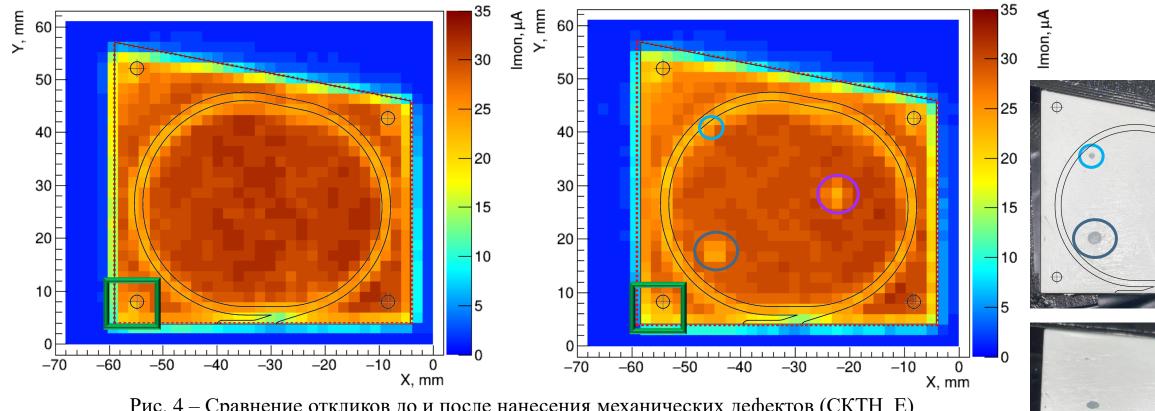



Рис. 4 – Сравнение откликов до и после нанесения механических дефектов (СКТН Е)

- > Отклик детектора также измерялся до и после нанесения дефектов (три отверстия диаметром 3 мм и одно отверстие 1 мм при одинаковой глубине 5 мм)
- > Стандартное отклонение в центральной области (внутри петли WLS) увеличивается с 1,15 мкА в образце без дефектов до 1,45 мкА после введения дефектов.
- ➤ Источник питания A7585D позволяет однозначно устанавливать факт наличия или отсутствия только крупных дефектов

## Метод 2: Производственные дефекты

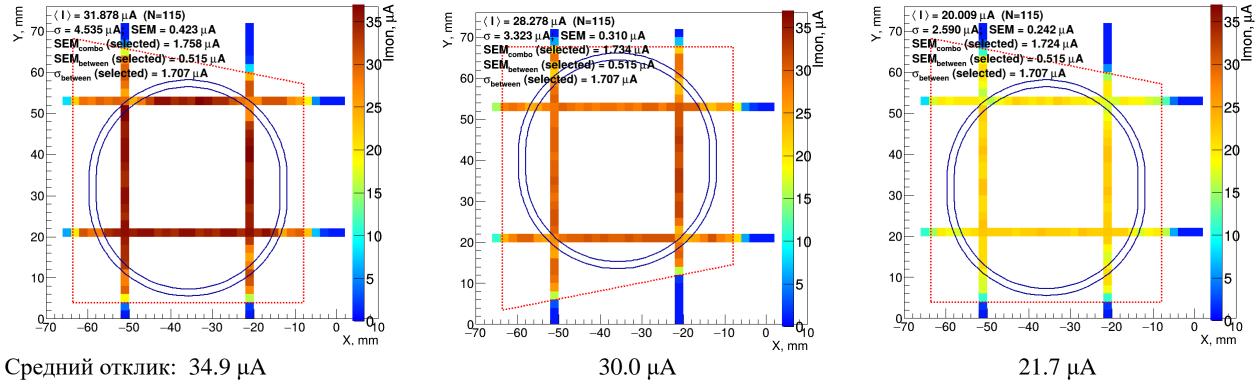



Рис. 5 – Сравнение откликов с тайлов с производственным дефектом (отсутствие светоотражающей краски и клея)

- ➤ Тепловые карты отклика были собраны для двух образцов: с оптическим клеем СКТН Б, без светоотражающего покрытия и без клея средний отклик в центральной области сцинтиллятора отличается на 38%. В случае аномального радиационного повреждения детектора он по прежнему будет выполнять свои функции.
- > Первоначальный метод информативен и точен, однако снятие полной карты занимает слишком много времени
- > Был предложен более быстрый, но менее подробный метод на основе сетки (на этапе разработки)

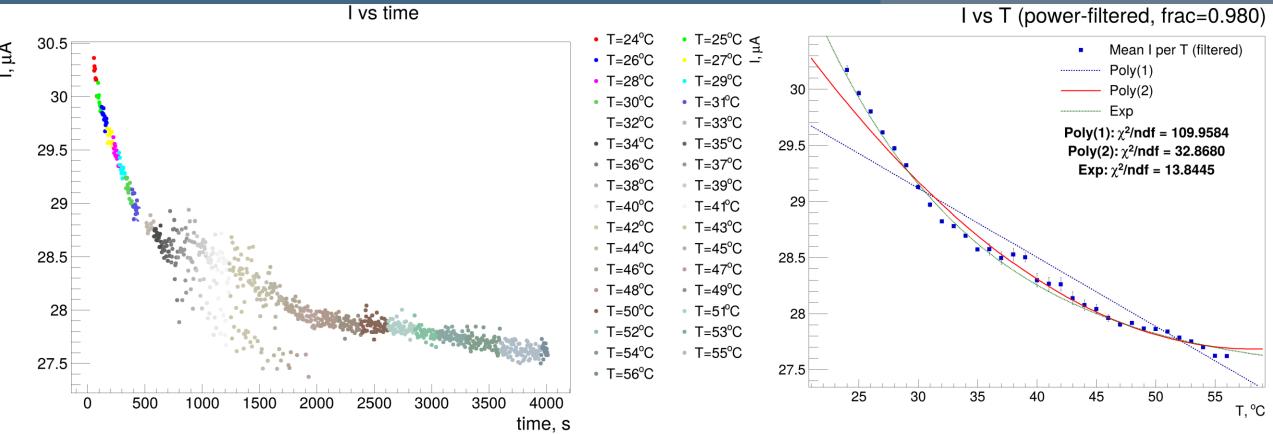



Рис. 6 – Зависимость тока фотоумножителя от времени работы трубки и ее температуры

- > Рентгеновской трубкой облучалась одна точка сцинтиллятора на протяжении часа;
- > Собирались данные по отклику детектора, мощности и температуре трубки
- ▶ Построены распределения зависимости тока фотоумножителя от времени и от температуры (для одной температуры найдено среднее значение отклика + выкинуты значения с дрейфом мощности)
- ➤ За 1 час температура изменилась на 20 °C и ток уменьшился на 3 µA

## Зависимость тока SiPM от температуры трубки

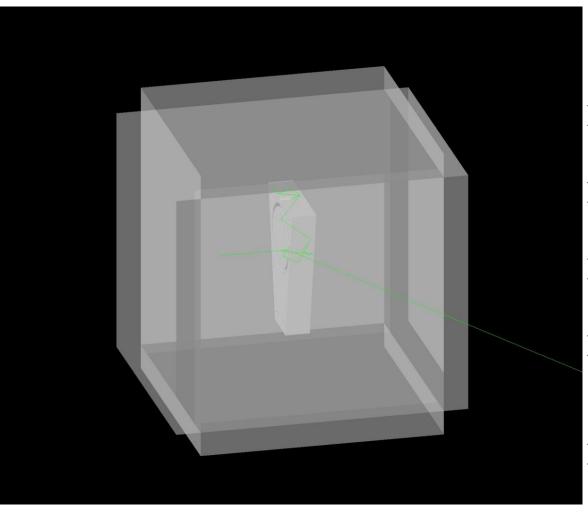
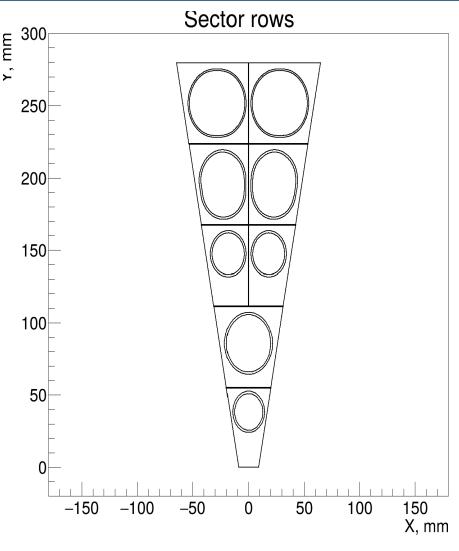




Рис. 7 – Модель тайла в GEANT4, окруженная детекторами

- ➤ В GEANT4 была построена модель сцинтиллятора, облучаемая рентгеновскими квантами (до 22 КэВ, в будущем будет внедрен спектр трубки)
- Многократное перерассеяние убивает локальность облучения
- Сцинтиллятор окружен чувствительными детекторами
- ➤ Задняя панель детектирует 72% квантов, все остальные грани до 13%
- Т.о. около 85% квантов начального потока, несмотря на перерассеяние, покидают детектор и могут быть вторичными источниками
- Этот эффект, в том числе, может вносить наибольший вклад в разность тока центральной и внешней областей

### Исследование сектора на сканере



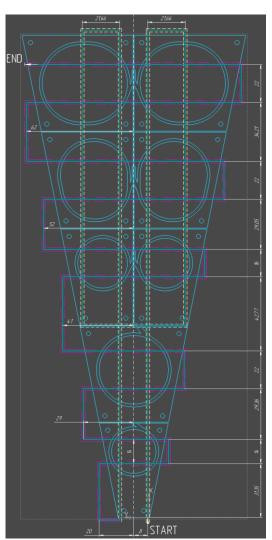



Рис. 7 – Модель сектора в ПО без внедренного ROI и один из контуров обхода

#### В планах:

- > Сборка сектора (ongoing)
- Учет температурных корреляций
- Проверка наличия перерассеяний из тайла в тайл
- Подавление возможных «обратных» и боковых рассеяний
- Разработка наименее времезатратных методов обхода и сбора сигнала с сектора
- Разработка программного обеспечения (в том числе online)

## Разработка платы для 8 и 12 SIPM Hamamatsu

- Разработаны платы для размещения и подключения SIPM Hamamatsu S14160-1310PS на 8 и 12 тайлов с возможностью термокомпенсации температурных отклонений детекторов.
- Подключение реализовано с помощью разъема ВН-30-2.

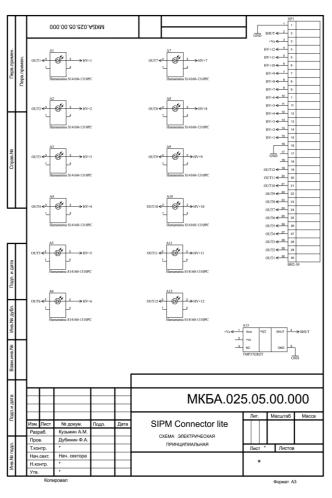



Рис. 8 - Схема принципиальная на 12 тайлов

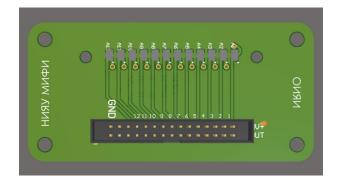



Рис. 9а - Схематическое изображение варианта на 12 тайлов

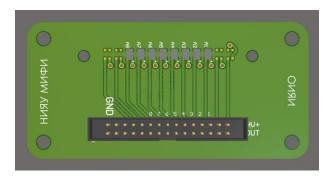



Рис. 9б - Схематическое изображение варианта на 8 тайлов

# Термокомпенсация

- Натататы S14160-1310PS весьма чувствительны к изменению рабочей температуры, поэтому для проведения корректных измерений температурные отклонения необходимо учитывать и компенсировать.
- САЕN DT5202 поддерживает 2 типа термодатчиков для внесения температурных поправок: LM94021 и TMP37
- Для реализации на плате был выбран ТМР37 в виду доступности документации и наличия микросхемы в розничной продаже.
- ▶ Исследование CAEN A5251 позволило установить схему подключения термодатчика к FERS.

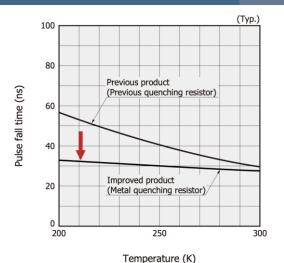



Рис. 10а - Влияние температуры на время среза

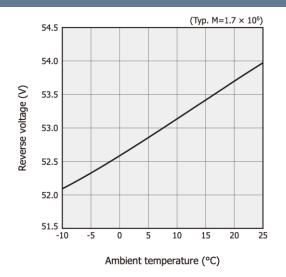
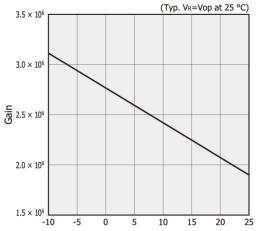




Рис. 10б - Влияние температуры на напряжение



Pис. 10в - Влияние температуры на усиление

More details - @Artem

# Расчет тепловыделения

### Тепловыделение SIPM Hamamatsu S14160-1310PS - Темновой ток:

$$P_d = 43 \cdot 120 \cdot 10^3 \cdot 1,8 \cdot 10^5 \cdot 1,602 \cdot 10^{-19} = 0,15 \mu W$$
 $typical typical typical gain elementary charge, V count rate, Hz charge, C$ 

Таким образом, нет потребности в охлаждении SIPM, а основные температурные погрешности вносит среда. Поэтому для внесения поправок достаточно одного термодатчика на плате.

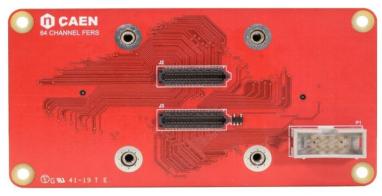



Рис. 11а - Оригинальный модуль CAEN A5251

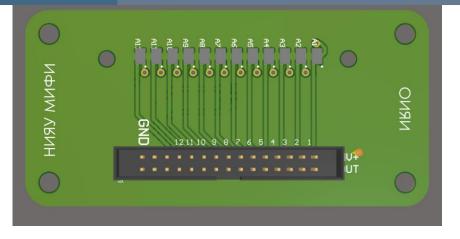



Рис. 11б - Разработанный модуль спереди

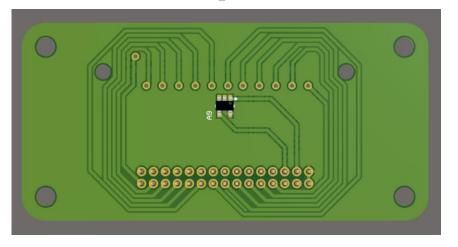
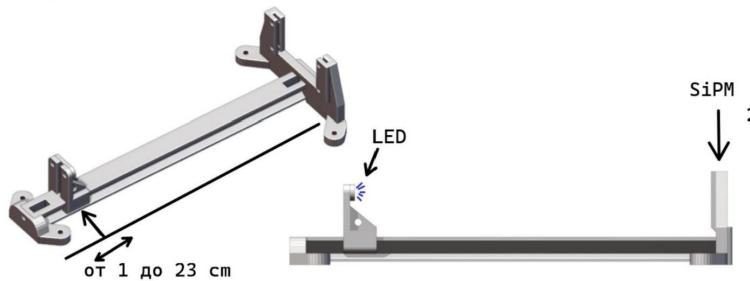
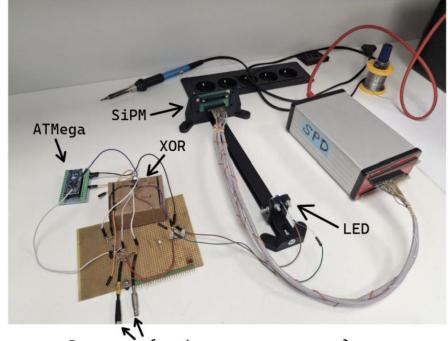



Рис. 11в - Разработанный модуль сзади
More details - @Artem


## Изготовленые платы на 8 и 12 SIPM Onsemi

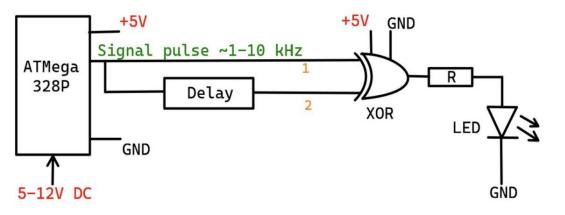
Были разработаны и уже изготовлены платы на основе Onsemi MicroFC-10035 в вариантах на 8 и 12 тайлов.




## Установка для тестов платы

1. Был разработан стенд для тестирования плат SiPM с возможностью настраивать расстояние от платы до светодиода:




2. Фото установки:



Задержка (на фото не подключена)

## Настройка установки для тестов платы

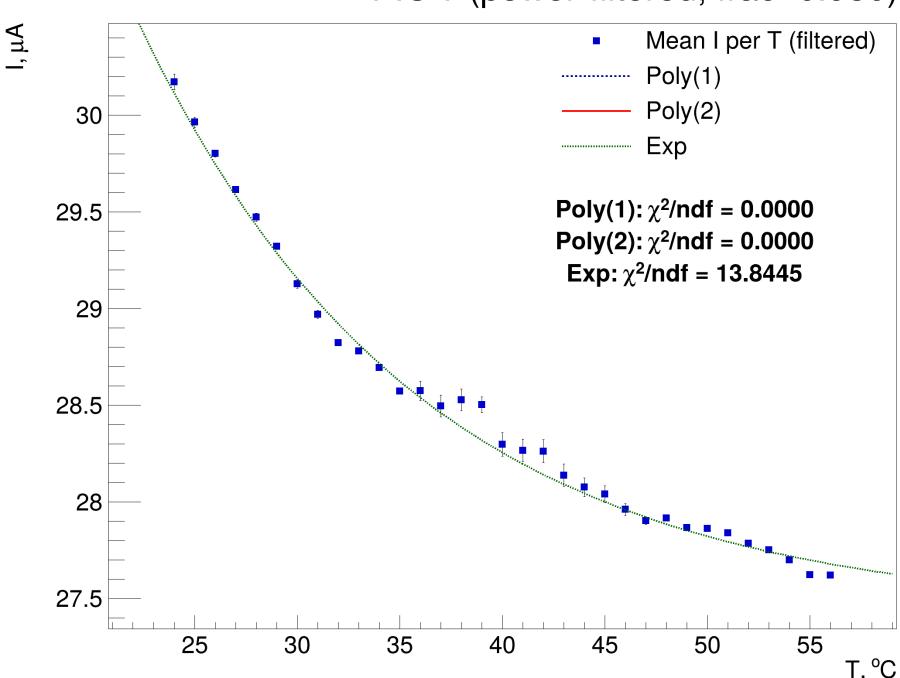
#### 3. Принципиальная схема LED-driver:



Принцип действия: Получить сигнал нужной длительности и с нужной задержкой возможно с помошью быстродействующей микросхемы Xor. На её входы подаётся раздвоенный сигнал с управляющего пина микроконтроллера; длительность сигнала будет пропорциональна разности задержки сигнала на путях "1" и "2".

#### 4. Промежуточные результаты:

С описанной выше схемой удалось добиться импульсов эффективной длительности порядка 10ns и частоты 1-10 kHz.


\*: эффективная длительность меньше полной длительности сигнала, так как у светодиода есть пороговое напряжение, ниже которого он не загорается



| Цветовая характеристика | Длина волны    | Напряжение       |
|-------------------------|----------------|------------------|
| Инфракрасные            | от 760 нм      | до 1.9 В         |
| Красные                 | 610 - 760 нм   | от 1.6 до 2.03 В |
| Оранжевые               | 590 - 610 нм   | от 2.03 до 2.1 В |
| Желтые                  | 570 - 590 нм   | от 2.1 до 2.2 В  |
| Зеленые                 | 500 - 570 нм   | от 2.2 до 3.5 В  |
| Синие                   | 450 - 500 нм   | от 2.5 до 3.7 В  |
| Фиолетовые              | 400 - 450 нм   | 2.8 до 4 В       |
| Ультрафиолетовые        | до 400 нм      | от 3.1 до 4.4 В  |
| Белые                   | Широкий спектр | от 3 ло 3 7 В    |

# Спасибо за внимание!

### I vs T (power-filtered, frac=0.980)

