Моделирование и обработка результатов измерений

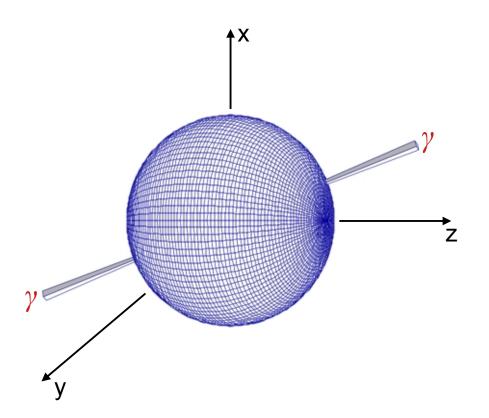
Практические работы

Тема 1: «Метод наименьших квадратов»

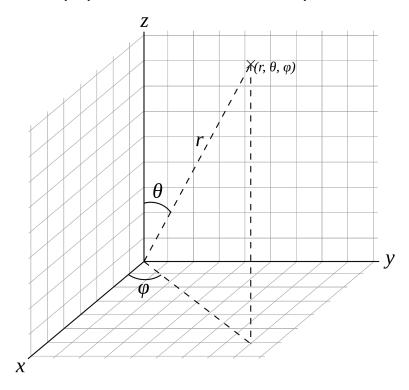
- 1: линейный МНК с графическим изображением полученной функции
- 2: линейный МНК с ошибками по оси Y в каждой точке и с графиком функции
- 3: квадратичный МНК без учета ошибок, с графиком функции
- 4: фитирование экспериментальных распределений функцией Гаусса

Тема 2: «Моделирование и обработка результатов по распаду π^0 -мезона на 2 γ -кванта»

- 5: моделирование распада $\pi^0 \rightarrow \gamma + \gamma$ в системе покоя π^0 -мезона
- 6: преобразование кинематических характеристик вторичных частиц (γ-квантов) в лабораторную систему отсчета, формулы Лоренц-преобразования
- 7: моделирование детектора *у*-квантов и запись модельных сигналов детектора во внешний файл
- 8: анализ экспериментальных данных по распаду π⁰-мезона. Чтение файла из работы № 7 и проверка кинематических параметров вторичных частиц
- 9: построение массового спектра системы двух γ -квантов и восстановление массы родительской частицы


Поэтапное развитие программы с математической моделью распада частицы и детектирования продуктов распада

Создание второй программы, осуществляющей анализ модельных данных


Практическая работа №5

Моделирование распада $\pi^0 \rightarrow \gamma + \gamma$ в системе покоя π^0 -мезона

- Масса покоя π^0 135 МэВ
- Изотропный распад на два *у*-кванта

Сферическая система координат

полярный угол:

 $0 \le \theta \le \pi$

азимутальный угол: $0 \le \phi \le 2\pi$

Практическая работа №5

Моделирование распада $\pi^0 \longrightarrow \gamma + \gamma$ в системе покоя π^0 -мезона

Задание:

- разработать математическую модель распада
- написать программу и провести моделирование (10⁵ 10⁶ событий распада)
- построить гистограммы угловых и энергетических спектров обоих γ -квантов
- проверить выполнение законов сохранения энергии и импульса в каждом событии

В качестве шпаргалки:

Используется пакет гистограммирования и анализа данных Root (http://root.cern.ch)

- Один из самых простых классов одномерная гистограмма ТН1
- Подключение с помощью заголовочного файла ТН1.h
- #include <TH1.h>
- Определение гистограммы TH1F hist("Identifier","Title",Nx,Xmin,Xmax);
- Заполнение гистограммы hist.Fill(x);
- Рисование гистограммы hist.Draw();

Генерация случайных чисел в пакете Root:

- Один из самых простых генераторов: TRandom
- Функция: Rndm() генерирует случайное число в диапазоне (0,1)
- #include <TRandom.h>
- Создание объекта генератора случайных чисел: TRandom r;
- Вызов функции и получение значения случайного числа: double a=r.Rndm();

Пример заполнения гистограммы генератором случайных чисел

Файл test_fill.С (это именованный скрипт для выполнения в програмной оболочке Root)

```
void test_fill()
TH1F *hist1 = new TH1F("hist1","Flat random distribution",100,0,1.1);
TRandom *r = new TRandom();
Double ta;
for (Int_t i=0; i<10000; i++)
\{ a = r -> Rndm(); 
 hist1->Fill(a);
hist1->Draw();
```