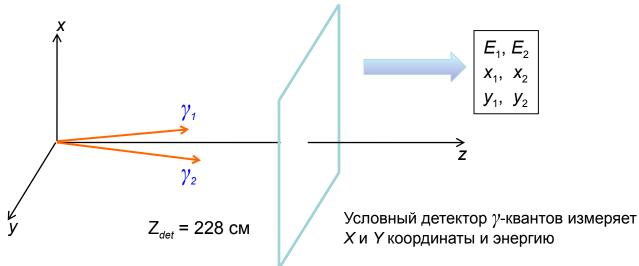
Моделирование и обработка результатов измерений

Практические работы

Тема 1: «Метод наименьших квадратов»

- 1: линейный МНК с графическим изображением полученной функции
- 2: линейный МНК с ошибками по оси Y в каждой точке и с графиком функции
- 3: квадратичный МНК без учета ошибок, с графиком функции
- 4: фитирование экспериментальных распределений функцией Гаусса

Тема 2: «Моделирование и обработка результатов по распаду π^0 -мезона на 2 γ -кванта»


- 5: моделирование распада $\pi^0 o \gamma + \gamma$ в системе покоя π^0 -мезона
- 6: преобразование кинематических характеристик вторичных частиц (γ-квантов) в лабораторную систему отсчета, формулы Лоренц-преобразования
- 7: моделирование детектора *у*-квантов и запись модельных сигналов детектора во внешний файл
- 8: анализ экспериментальных данных по распаду π⁰-мезона. Чтение файла из работы № 7 и проверка кинематических параметров вторичных частиц
- 9: построение массового спектра системы двух γ -квантов и восстановление массы родительской частицы

Поэтапное развитие программы с математической моделью распада частицы и детектирования продуктов распада

Создание второй программы, осуществляющей анализ модельных данных

Практическая работа №8

Чтение данных с детектора γ -квантов из Root-tree* и проверка их качества

<u>Задание</u>:

написать <u>новую</u> программу, которая:

- читает данные с детектора из файла, записанного в работе №7
- проверяет качество считанных данных путем построения соответствующих гистограмм. Здесь надо учитывать, что в этой работе известна геометрия экспериментальной установки, тип зарегистрированных детектором частиц (γ-кванты) и их параметры. Тип распавшейся родительской частицы неизвестен.

Для проверки качества данных необходимо в первую очередь загистограммировать параметры, непосредственно считанные из файла, не применяя к ним никаких преобразований (так называемые «сырые» данные). Далее, зная геометрию экспериментальной установки, можно анализировать:

- энергетический и угловые спектры
- множественность (т. е. число) γ-квантов в одном событии
- выполнение законов сохранения и т.д.

⁷⁾ Root-tree -- база данных из программного пакета Root
Подробнее: https://root.cern.ch/root/htmldoc/quides/users-quide/ROOTUsersGuide.html#trees