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ВВЕДЕНИЕ

На текущий момент в России развивается малая атомная энергетика
(МАЭ) с целью обеспечения энергоресурсами удалённых районов и про-
изводств. В частности, перспективным считается производство плавучих
атомных энергоблоков (ПАЭБ) [19]. В связи с этим развитие атомной про-
мышленности потребовало введения средств мониторинга количества и ка-
чества находящегося в корпусе реактора ядерного материала для обеспе-
чения безопасности распространения атомной энергетики. Одним из воз-
можных решений этой проблемы представляется использование средств
мониторинга, основанных на регистрации реакторных антинейтрино.

Идея о возможности применения антинейтринного метода контроля
состояния ядерных реакторов впервые была предложена и исследована в
Курчатовском институте в 1970-ых годах Л. А. Микаэляном и А.А. Боро-
вым [7, 13]. Данный метод основан на регистрации электронных антиней-
трино, излучаемых в результате каскада бета-распадов продуктов деления
изотопов ядерного топлива. Антинейтрино являются индикаторами проте-
кания цепной реакции деления в активной зоне реактора. Предложенный
метод позволяет решать следующие задачи:

• Дистанционный контроль энерговыработки реактора;
• Мониторинг отработавшего ядерного топлива;
• Выявление несанкционированных режимов работы реактора (нара-

ботка оружейного плутония).
Эффективность антинейтринного метода контроля была подтвержде-

на сотрудниками Курчатовского института на экспериментах на Ровенской
АЭС [22] и в Бюже, Франция [1]. На текущий момент основным российским
проектом является детектор iDREAM на Калининской АЭС [2]. В других
странах активно работают эксперименты Daya Bay (Китай) [5], KamLAND
(Япония) [11], PROSPECT (США) [3]. Также планируются эксперимен-
ты JUNO (Китай) [6], NuLat (США) [8] и WATCHMAN (США). Текущие
исследования направлены на тестирование и развитие методов контроля
состояния реактора.
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Целью данной работы является моделирование измерительного
модуля детектора реакторных антинейтрино на основе пластикового сцин-
тиллятора. Результаты моделирования планируется использовать при со-
здании детектора.

Реакторные антинейтрино регистрируются по реакции обратного бета-
распада (ОБР):

ν̄e + p −→ e+ + n (1)

Регистрация позитрона, которая сопровождается процессами его тер-
мализации, аннигиляции, распространения аннигиляционных гамма-квантов,
происходит в течение нескольких наносекунд. Длительность замедления и
диффузии нейтрона достигает микросекундных значений. Далее, в резуль-
тате захвата нейтрона, происходит образование заряженных частиц или
гамма-квантов (в зависимости от типа используемого нейтронного погло-
тителя). Разделение во времени позитронного и нейтронного сигналов поз-
воляет использовать метод задержанных совпадений для выделения анти-
нейтринных событий на фоне других.

Использование Монте-Карло моделирования дает возможность опре-
делить оптимальные характеристики и провести симуляцию метода задер-
жанных совпадений в детекторе реакторных антинейтрино. Однако, про-
граммный пакет GEANT4 имеет ряд недостатков, например неправильное
моделирование (n,γ) реакций, происходящих на некоторых элементах. По-
этому первоначально необходимо решить следующие задачи:

• Создание библиотек для программного пакета GEANT4, описываю-
щих радиационный захват нейтрона на изотопах кадмия и гадолиния;

• Сравнение различных поглотителей нейтронов с точки зрения эф-
фективности регистрации нейтронного события;

• Моделирование сигнальных и фоновых событий и построение их теп-
ловых карт.
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1. РЕГИСТРАЦИЯ АНТИНЕЙТРИНО

Принципом работы ядерного реактора является самоподдерживаю-
щая цепная реакция деления тяжелых ядер, сопровождающаяся выделе-
нием энергии. Основными компонентами ядерного топлива являются изо-
топы урана и плутония (235U, 238U, 239Pu, 241Pu), которые вносят 99% вклад
в тепловую мощность реактора. В результате бомбардировки ядра нейтро-
нами, как правило, образуется два нейтроноизбыточных изотопа:

n +235 U →Ax X +Ay Y + k ·1 n, (1.1)

где k - число нейтронов, образованных в результате реакции.
Продукты реакции претерпевают цепочку в среднем из 6 бета-распадов,

в результате которых образуется в среднем 6 антинейтрино с энергией 0÷15

МэВ. Однако в текущих экспериментах значимый вклад в налблюдения
вносят только антинейтрино с энергией менее 9 МэВ (по причине малой
статистики на больших энергиях). Спектр реакторных антинейтрино пред-
ставляется в следующем виде:

ρ(Eν̄e, t) =
∑
i

αi(t) · ρi(Eν̄e), (1.2)

где ρi(Eν̄e) – кумулятивные спектры продуктов деления 235U, 238U, 239Pu,
241Pu [14] (рис.1.1), αi(t) – доли делений изотопов в момент времени t

(рис.1.2), i - массовое число изотопа.
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Рисунок 1.1 — Спектры электронных антинейтрино от изотопов 235U, 239Pu,
238U, 241Pu

.

Рисунок 1.2 — Зависимость вклада изотопов в число делений в течение
годичного цикла работы реактора. В среднем вклад изотопа составляет
0.56, 0.31, 0.07, 0.06 для 235U, 239Pu, 238U, 241Pu соответственно.

Стоит отметить, что антинейтринное излучение происходит не только
за счет деления ядер урана и плутония. Например, источником реактор-
ных антинейтрино также служит захват нейтронов в материалах активной
зоны реактора [21]. Вклад таких поправок в интенсивность антинейтрин-
ного сигнала составляет порядка 3% и существен только в области энергий
3÷ 3, 5 МэВ, поэтому их можно считать пренебрежимо малыми.

Регистрация реакторных антинейтрино происходит по реакции об-
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ратного бета-распада (ОБР) [18,23]:

ν̄e + p −→ e+ + n (1.3)

c пороговой энергией

Ethr =
(mn +me)

2 −m2
p

2 ·mp
≈ 1.8 МэВ

Сечение ОБР при энергиях реакторных антинейтрино крайне мало
(порядка 10−43 бн), поэтому целесообразно использовать детекторы с боль-
шим объёмом рабочего вещества и высоким содержанием ядер водорода,
например на основе пластиковых сцинтилляторов. В результате реакции
ОБР образуются быстрый позитрон с энергией порядка нескольких МэВ
и нейтрон с энергией порядка 10 ÷ 20 кэВ. Позитрон теряет свою энер-
гию в рабочем веществе за счет ионизационных и радиационных потерь,
черенковского излучения, термализуясь до тепловых энергий (0̃,025 эВ) за
время порядка нескольких пикосекунд (около 4̃0 пс). Далее аннигиляция с
электроном с образованием двух гамма-квантов с энергией 0,511 МэВ воз-
можна через образование пара- (τ = 170 пс) и орто-позитрония (τ = 2

нс). Существует два альтернативных процесса: диффузия термализован-
ного позитрона(τ = 470 пс) или аннигиляция позитрона на лету в процессе
термализации (однако в это случае аннигиляционные гамма-кванты будут
иметь энергию выше 0,511 МэВ). Эти процессы суммарно происходят за
время от десятков пикосекунд до несколько наносекунд. Нейтрон замед-
ляется в рабочем веществе и диффундирует до момента захвата за время
порядка микросекунд. В результате наблюдаются 2 сигнала — мгновен-
ный, от регистрации позитрона, и задержанный, полученный в результате
замедления и захвата нейтрона. Таким образом, можно реализовать метод
задержанных совпадений, где основным является позитронный сигнал. Ре-
гистрация нейтрона позволяет отделить полезный сигнал от фона.

Отметим, что в результате регистрации позитрона можно восстано-
вить его энергию, которая линейно связана с энергией антинейтрино:

Ee+ ≈ Eν̄e − Ethr + 2mec
2 ≈ Eν̄e − 0, 78 МэВ (1.4)
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1.1. КОНСТРУКЦИЯ ДЕТЕКТОРА РЕАКТОРНЫХ

АНТИНЕЙТРИНО НА ОСНОВЕ

ПЛАСТИКОВОГО СЦИНТИЛЛЯТОРА

Детектор реакторных антинейтрино планируется из нескольких мо-
дулей, каждый из которых можно считать отдельным регистрирующим
звеном. Конструкция детектора представлена на рисунке 1.3. Количество
модулей в детекторе варьируемо и определяет величину статистики ре-
гистрируемого потока реакторных антинейтрино. Число реакций ОБР в
сутки обратно пропорционально квадрату расстояния от реактора до де-
тектора и определяется формулой:

n =
⟨σ⟩FNH

4πR2
, (1.5)

где n – число реакций ОБР, проходящих в рабочей зоне детектора; ⟨σ⟩ =∑
i

αiσ
(i), где σ(i) – выход ОБР на деление i-того изотопа; F – число деле-

ний в активной зоне реактора в сутки; NH – число ядер водорода в рабочей
области детектора; R – расстояние между реактором и детектором. На-
пример, в детекторе с массой рабочего вещества ∼1 тонна, содержащей
NH = 7 · 1028 ядер водорода, число реакций ОБР n достигает значений

n = (680 − 2700)
1

сутки
в диапазоне R = 10 ÷ 20 м (для реактора ВВЭР-

1000).
Стоит отметить, что не все события ОБР могут быть зарегистриро-

ваны. Сцинтилляционные детекторы с этой точки зрения обладают высо-
кой эффективностью, достигающей ∼80%. Следовательно, среднесуточное
число зарегистрированных нейтрино в детекторе массой 1 тонна может
достигать значений 500÷ 2000 штук.

Очевидно, что при увеличении рабочего объема детектора, а следова-
тельно и его массы, растет статистика событий, то есть точность результа-
тов. Для достижения погрешности порядка 3-5% необходимо использовать
детектор с массой рабочего вещества не менее 1 тонны. Антинейтринный
детектор с такими параметрами включает в себя порядка 400 модулей.

Как уже было отмечено, каждый модуль является автономным реги-
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Рисунок 1.3 — Конструкция детектора реакторных антинейтрино на основе
пластикового сцинтиллятора

стрирующим звеном. Схема модуля детектора реакторных антинейтрино
представлена на рисунке 1.4.

Рисунок 1.4 — Схема модуля детектора реакторных антинейтрино

Основным рабочим веществом модуля является богатый водородом
пластиковый сцинтиллятор из полистирола (C8H8)n с добавлением p-терфенила
С18H14 и POPOP - 1,4-бис (5-фенилоксазол-2-ил) бензол C24H16N2O2. С це-
лью уменьшения неоднородности светособирания и увеличения количества
регистрируемых фотонов сцинтиллятор покрыт слоем тайвека. Сцинтил-
ляционные фотоны регистрируются с помощью ФЭУ N4021-2 с диаметром
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фотокатода 46,5 мм.
Нейтрон термализуется в водородосодержащей среде сцинтиллято-

ра и захватывается в нейтронном поглотителе. Конструкция поглотителя
зависит от типа используемого рабочего вещества. В качестве нейтронных
поглотителей используют 10B, 6Li, 113Cd, 155Gd, 157Gd [20]. Рассмотрим каж-
дый из этих вариантов.

НЕЙТРОННЫЙ ПОГЛОТИТЕЛЬ НА ОСНОВЕ 10B

Захват нейтрона происходит по реакции:

10B + n →4 He +7 Li + 2, 79 МэВ (6%)

→4 He +7 Li∗ + 2, 31 МэВ (93, 9%)

↓
7Li + γ (0, 48 МэВ)

В качестве нейтронного поглотителя используется 10B, который вхо-
дит в состав соединения B2O3:ZnS(Ag), представляющего собой белый по-
рошок c размером гранул 300-800 мкм [9, 15]. Образованные ядра 4He, 7Li
ионизируют и возбуждают молекулы сцинтиллятора ZnS(Ag), которые, пе-
реходя в основное состояние, излучают фотоны сцинтилляции. Сечение за-
хвата теплового нейтрона ядром 10B составляет 3840 барн.

фотокатода 46,5 мм.
Нейтрон термализуется в водородосодержащей среде сцинтиллятора

и захватывается в нейтронном поглотителе. Конструкция поглотителя за-
висит от типа используемого рабочего вещества. В качестве нейтронных
поглотителей используют 10B, 6Li, 114Cd, 157Gd [16]. Рассмотрим каждый
из этих вариантов.

НЕЙТРОННЫЙ ПОГЛОТИТЕЛЬ НА ОСНОВЕ 10B

Захват нейтрона происходит по реакции:

10B + n →4 He +7 Li + 2, 79 МэВ (6%)

→4 He +7 Li∗ + 2, 31 МэВ (93, 9%)

↓
7Li + γ (0, 48 МэВ)

В качестве нейтронного поглотителя можно использовать белый по-
рошок B2O3:ZnS(Ag) c размером гранул 300-800 мкм [17; 18]. Образованные
ядра 4He, 7Li ионизируют и возбуждают молекулы сцинтиллятора ZnS(Ag),
которые, переходя в основное состояние, излучают фотоны сцинтилляции.
Сечение захвата теплового нейтрона ядром 10B составляет 3840 барн.

Гранула

Тепловой нейтрон
10B

7Li
0.84 МэВ

α частица
1.47 МэВ

γ-излучение

0.48 МэВ

94%

Рисунок 1.5 — Схема взаимодействия теплового нейтрона с гранулой
B2O3:ZnS(Ag)

Использование нейтронного поглотителя на основе бора аргументи-
руется высокой эффективностью захвата нейтронов, видимым диапазоном
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Рисунок 1.5 — Схема взаимодействия теплового нейтрона с гранулой
B2O3:ZnS(Ag)

Использование нейтронного поглотителя на основе бора аргументи-

9



руется высокой эффективностью захвата нейтронов, видимым диапазоном
светоиспускания (400-500 нм), а также низкой стоимостью [17].

Одна из возможных конструкций нейтронного поглотителя представ-
лена на рисунке 1.6.

Рисунок 1.6 — Нейтронный поглотитель на основе B2O3:ZnS(Ag)

Гранулы борного порошка окружены оптически-прозрачным соеди-
нением. Фотоны сцинтилляции, образованные в результате ионизации и
возбуждения ZnS(Ag) ядрами гелия и лития, попадают в оптоволокна (фай-
беры). Оптоволокно представляет собой цилиндр из полистирола радиуса
Rin = 0, 98 мм, окруженный оболочкой PMMA (полиметилметакриллат)
толщиной 0,02 мм (рис. 1.7). Фотоны, попадающие в оптоволокно, удержи-
ваются в его сердцевине за счёт явления полного внутреннего отражения на
границе раздела сердцевины и оболочки, что обеспечивает их распростра-
нение вдоль волокна с минимальными потерями. На выходе из файбера
световой сигнал регистрируется с помощью фотоумножителя (например,
SiPM).

а) Конструкция оптоволокна
б) Спектры поглощения и
излучения для различных

оптоволокон (Y-7, Y-8, Y-11)

Рисунок 1.7 — Параметры оптоволокна
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Для улучшения светособирания нейтронный поглотитель окружается
светоотражающим веществом, например тайвеком.

НЕЙТРОННЫЙ ПОГЛОТИТЕЛЬ НА ОСНОВЕ 6LI

Захват нейтрона происходит по реакции:

6Li + n →4 He +3 H + 4.8 МэВ (1.6)

Сечение захвата теплового нейтрона составляет 945 барн.
В качестве нейтронного поглотителя используется 6Li в составе Li2CaSiO4:Eu2+

(LCS). LCS представляет собой поликристаллы размером 10-30 мкм в свя-
зующем слое (рис.1.9). Вещество наносится на боковые стороны пластико-
вого сцинтиллятора в виде краски в несколько слоев.

Рисунок 1.8 — Снимок LCS под электронно-сканирующим микроскопом

В результате реакции захвата нейтрона литием образуется альфа-
частица и ядро трития с энергиями 2 и 2,8 МэВ соответственно. Про-
бег альфа-частицы в веществе составляет 3-4 мкм, трития — 28-30 мкм.
Продукты реакции попадают в вещество сцинтиллятора, образуя световую
вспышку. Полученный свет распространяется в оптоволокнах и регистри-
руется фотоумножителями.

Преимуществами такого нейтронного поглотителя являются быстрая
кинетика высвечивания, практически гарантированное получение света по-
сле захвата нейтрона на 6Li (благодаря прозрачности к собственному из-
лучению).
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НЕЙТРОННЫЙ ПОГЛОТИТЕЛЬ НА ОСНОВЕ КАДМИЯ
ИЛИ ГАДОЛИНИЯ

В качестве нейтронного поглотителя можно использовать кадмий или
гадолиний. Эти вещества обладают высоким сечением захвата: 254000 барн
для 157Gd, 60900 барн для 155Gd, 49000 барн для природной смеси гадо-
линия; 20600 барн для 113Cd, 3300 барн для природной смеси кадмия. В
результате захвата нейтрона на кадмии или гадолинии излучается множе-
ство гамма-квантов суммарной энергии порядка 9 МэВ, часть из которых
регистрируется в пластиковом сцинтилляторе [12]. Спектр излучения в ре-
зультате нейтронного захвата на Gd представлен на рисунке 1.8.

Рисунок 1.9 — Спектр гамма-излучения Gd в результате нейтронного за-
хвата

Основными премуществами таких поглотителей являются высокая
эффективность захвата нейтронов и простота изготовления (кадмиевые
листы или гадолиниевая краска). Однако одной из основных проблем пред-
ставляется сложность в моделировании и измерении спектров гамма-излучения.
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2. МОДЕЛИРОВАНИЕ МОДУЛЬНОГО
ДЕТЕКТОРА РЕАКТОРНЫХ

АНТИНЕЙТРИНО

2.1. СОЗДАНИЕ БИБЛИОТЕКИ ДЛЯ

МОДЕЛИРОВАНИЯ (n, γ) РЕАКЦИЙ НА

ИЗОТОПАХ ГАДОЛИНИЯ И КАДМИЯ

В программном пакете GEANT4 существует проблема, связанная с
моделированием (n, γ) реакции на изотопах некоторых элементов, в том
числе на кадмии и гадолинии. Базовые библиотеки пакета при захвате ней-
трона на атоме генерируют всего один гамма-квант с энергией, которая аб-
солютно не соотносится с теоретическими данными. Поэтому существует
потребность в создании библиотеки, которая будет проводить правильное
моделирование радиационного захвата нейтрона.

В ходе работы была разработана и написана подобная библиотека для
изотопов 155Gd, 157Gd, 113Cd, обладающих колоссально высоким сечением
захвата тепловых нейтронов. Были смоделированы все возможные с учетом
законов сохранения каскады гамма-квантов для каждого изотопа, данные
по которым были взяты из баз данных [16]. Каскады записаны в текстовые
файлы в следующем формате:

N

n1 t1 E1 τ1 cos θ1 ϕ1 t2 E2 ... ,

где N – число каскадов, ni – число частиц в каскаде, ti – тип части-
цы (гамма-квант, электрон, позитрон), Ei – энергия частицы, τi – время
задержки между захватом нейтрона и образованием частицы; cos θi, ϕi –
направление вылета частицы относительно вектора импульса нейтрона до
захвата. Всего получено 10.000.000 каскадов для 113Cd, 9.828.020 — для
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155Gd, 9.670.591 — 157Gd.
При захвате нейтрона на изотопе библиотека генерирует один из кас-

кадов гамма-квантов. Также в функции программы добавлена возмож-
ность определения изотопа, на котором произошёл захват нейтрона (по-
добной функции ранее не было встроено в СПО GEANT4). Проведен тео-
ретический (по формуле 2.1) и Монте-Карло расчет вероятностей захвата
на каждом элементе для разных материалов, результаты представлены в
таблице 2.1.

P(X) =
Σa(X)

Σtot
a

, (2.1)

где P(X) - вероятность захвата нейтрона на элементе X; Σa(X) = wX ·
σa(X) - макросечение захвата нейтрона на элементе X, где wX - массовая
доля элемента в веществе, σa(X) - сечение захвата теплового нейтрона на
элементе; Σtot

a - сумма макросечений по всем элементам в веществе.

Вещество Атом, на котором
произошел захват

Теоретическая
вероятность
захвата на атоме, %

Вероятность захвата,
рассчитанная методом
Монте-Карло, %

(СН2)n+
+Gd(0.1%) Gd 27,93 27,8±0,3

(СН2)n+
+Gd(0.1%) H 71,97 71,8±0,2

(СН2)n+
+Gd(0.1%) C 0,1 0,11±0,02

CdPb Cd 99,99 99,98±0,01
CdPb Pb 0,01 0,02±0,02
H2O+
+Gd(0,1%) H 0,45 0,42±0,06

Н2O+
+Gd(0.1%) Gd 99,55 99,57±0,02

Таблица 2.1 — Вероятности захвата нейтрона на каждом элементе в раз-
личных веществах

2.1.1. КАЛИБРОВКА БИБЛИОТЕКИ

Были смоделированы энергетические спектры образующихся в ре-
зультате захвата теплового нейтрона гамма-квантов. Они представлены на
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рисунках 2.1, 2.2.

Рисунок 2.1 — Спектр гамма-излучения (n, γ) реакции на 155Gd

Рисунок 2.2 — Спектр гамма-излучения (n, γ) реакции на 113Cd

Полученные спектры хорошо соотносятся с экспериментально полу-
ченными в работах [4] (для рис. 2.1), [10] (для рис. 2.2). Также был смоде-
лирован зарядовый спектр захватов нейтронов от источника 252Cf в центре
детектора iDREAM (состав рабочего вещества (СН2)n +Gd(0.1%)) (рис.
2.3), который тоже соотносится с экспериментально наблюдаемыми спек-
трами [2]. Следовательно, можно сделать вывод о правильности работы
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библиотеки, что позволяет использовать ее для моделирования нейтрон-
ных поглотителей модульного детектора.

Рисунок 2.3 — зарядовый спектр захватов нейтронов от источника 252Cf в
центре детектора iDREAM

2.2. ОПРЕДЕЛЕНИЕ ЭФФЕКТИВНОСТИ

РЕГИСТРАЦИИ НЕЙТРОННОГО СИГНАЛА В

СБОРКЕ С НЕЙТРОННЫМИ

ПОГЛОТИТЕЛЯМИ НА ОСНОВЕ КАДМИЯ И

ГАДОЛИНИЯ

Модель детектора представлена на рисунке 2.4. Она представляет со-
бой 9 модулей, каждый из которых состоит из пластикового сцинтиллятора
размерами 5 · 5 · 70 см, нейтронного поглотителя (кадмиевые или гадоли-
ниевые листы) толщиной 0,5 мм и двух ФЭУ (рис. 2.5).
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Рисунок 2.4 — Схема модуля детектора реакторных антинейтрино

Рисунок 2.5 — Схема модуля детектора реакторных антинейтрино

В центре модуля №5 изотропно генерировались нейтроны обратно-
го бета-распада (<E>≈15 кэВ). Сигнальным засчитывалось событие, при
котором в результате захвата нейтрона в детекторе суммарное энерговы-
деление во всех модулях оказалось больше Eпор. На рисунках 2.6, 2.7 пред-
ставлены зависимости эффективности регистрации нейтронного сигнала
от пороговой энергии Eпор для кадмиевого и гадолиниевого нейтронного
поглотителя.
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Рисунок 2.6 — График зависимости эффективности регистрации детектора
с кадмиевым поглотителем от пороговой энергии

Рисунок 2.7 — График зависимости эффективности регистрации детектора
с гадолиниевым поглотителем от пороговой энергии

Видно, что эффективность регистрации принимает довольно высокое
значение и достигает ηCd =38% для кадмиевого поглотителя и ηGd =46%
для гадолиниевого при Eпор=3 МэВ. Данный результат можно считать
успешным с учетом того, что фоновые события, связанные с естественной
радиоактивностью проявляются в области до 3 МэВ. Соответственно вы-
ставление такой пороговой энергии позволяет значительно снизить интен-
сивность фоновых событий с сохранением высокой эффективности реги-
страции сигналов, которая на порядки выше эффективности регистрации
нейтронов при использовании борного поглотителя (ηB1̃%).

18



2.3. МОДЕЛИРОВАНИЕ СИГНАЛЬНЫХ И

ФОНОВЫХ СОБЫТИЙ В МОДУЛЬНОМ

ДЕТЕКТОРЕ РЕАКТОРНЫХ АНТИНЕЙТРИНО

Для сборки из 25 модулей было проведено моделирование сигналь-
ных событий, генерировались позитроны и нейтроны в центре централь-
ного модуля с энергиями, соответствующими реакции ОБР. Считывалось
энерговыделение в каждом модуле, получен набор тепловых карт, пример
одной из них представлен на рисунке 2.8.

Рисунок 2.8 — Тепловая карта события реакции ОБР

На рисунке по энерговыделению в модулях можно выделить направ-
ления разлета гамма-квантов: один гамма-квант летел через модули №13,
14, 15; другой - через модули №13, 18, 23. Также можно восстановить точку
протекания реакции ОБР — модуль №13. Также проведено моделирование
фонового события на примере гамма-кванта с энергией 1,5 МэВ (рис 2.9).
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Рисунок 2.9 — Тепловая карта фонового события (гамма-квант с энергией
1.5 МэВ)

По рисунку видно, что гамма-квант летел по траектории через моду-
ли №22, 23, 18, 13, 8, 9, 4. С учетом проверки по полному энерговыделению
в детекторе и по схеме совпадений с регистрацией нейтронного сигнала
можно разделить сигнальные события от фоновых.
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ЗАКЛЮЧЕНИЕ

В данной работе было проведено моделирование измерительного мо-
дуля детектора реакторных антинейтрино на основе пластикового сцин-
тиллятора.

В ходе работы были получены следующие результаты:
• Была разработана библиотека для моделирования (n,γ) реакций на

изотопах кадмия и гадолиния. Правильность работы библиотеки под-
тверждена на основании сравнения с экспериментальными данными;

• Рассчитаны эффективности регистрации нейтронного сигнала для
поглотителей на основе кадмия и гадолиния. Полученные значения
составили ηCd =38% и ηGd =46% для пороговой энергии регистрации
Eпор=3 МэВ;

• Проведено моделирование сигнальных и фоновых событий в модуль-
ном детекторе реакторных антинейтрино, построены их тепловые кар-
ты. Наглядно показан метод отделения сигнальных и фоновых собы-
тий.
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