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ВВЕДЕНИЕ

Одной из передовых технологий по исследованию функциональных осо-
бенностей и структур тканей организма является позитронно-эмиссионная томо-
графия (ПЭТ), хорошо зарекомендовавшая себя в области диагностики злокаче-
ственных новообразований. [1]. При проведении ПЭТ-исследования, в организм
вводится специальный радиофармпрепарат, содержащий изотопы, распадающие-
ся с испусканием позитронов, который поглощается раковыми клетками и служит
маркером при сканировании. Пролетев небольшое расстояние, родившиеся пози-
троны аннигилируют с электронами тканей, в результате чего рождаются два γ-
кванта, разлетающиеся на угол, близкий к 180°. Излучение регистрируется при
помощи кольца из детекторов, расположенных вокруг источника, на основании
отклика которых формируется визуальная модель, отражающая местоположение
опухоли [2].

В настоящее время рынокПЭТ в основном представлен зарубежными реше-
ниями от крупных производителей медицинского оборудования: Philips, Siemens,
General Electric Healthcare и другие. В основе таких установок лежат сборки из
неорганического сцинтилляционного кристалла (обычно применяются кристал-
лы BGO (германат висмута) или LSO (силикат Лютеция)) и фотоэлектронного
умножителя (ФЭУ). Также ПЭТ дополняется установкой для МРТ/КТ, что позво-
ляет сопоставить информацию о местоположении злокачественного образования
с его положением внутри организма. Подобная интеграция значительно усложня-
ет процесс разработки, что связано с усложнением общей компоновки конструк-
ции, а также с высокой чувствительностью ФЭУ к внешнему электромагнитному
полю и влиянию на корректную работу детектора в случае применения МРТ.

В лаборатории детекторов ядерной медицины, организованной на базе ла-
боратории физики редких процессов института имени Курчатова и кафедры фи-
зики элементарных частиц и космологии, ведётся разработка макета позитронно-
эмиссионного томографа для животных. По результатам работы в рамках бака-
лавриата представлена система подстройки напряжений вручную на базе диффе-
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ренциального каскада. В данной работе продолжается развитие данного решения
до системы подстройки напряжений на базе цифро-аналогового преобразователя
при помощи микроконтроллера ATmega328P.
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1 ПОЗИТРОННО-ЭМИССИОННЫЙ ТОМОГРАФ
ДЛЯ ЖИВОТНЫХ

1.1 ПРИНЦИПЫ РАБОТЫ ПЭТ

Позитронно-эмиссионная томография — это метод исследования, который
позволяет изучать структуру и функциональные особенности тканей организма.
ПЭТ считается эффективным инструментом для диагностики злокачественных
новообразований.

В ходе ПЭТ-исследования в организм пациента вводят специальный радио-
фармпрепарат (РФП). В онкологии чаще всего используется фтордезоксиглюкоза
(ФДГ) [3].

ФДГ является аналогом глюкозы, которая играет ключевую роль в обмене
веществ, участвуя в качестве источника энергии для клеток организма. Раковые
клетки поглощают ФДГ быстрее, чем здоровые, что приводит к увеличению кон-
центрации препарата в опухоли по сравнению с окружающими тканями. Это де-
лает ФДГ эффективным маркером для обнаружения опухолей при сканировании.

В составе ФДГ используется изотоп фтор-18, который характеризуется дли-
тельным периодом полураспада (109.8 минуты) и низкой энергией излучения. Это
обеспечивает высокое качество изображений с хорошим пространственным раз-
решением. Кроме того, благодаря длительному периоду полураспада, препарат
можно транспортировать из места хранения до места проведения сканирования.

Однако фтор-18 имеет недостаток, который заключается в его способности
накапливаться в тканях мозга и почек. Это может привести к ложному обнаруже-
нию патологий в этих органах даже при отсутствии заболеваний.[1].

Радиоактивная метка подвергается β+-распаду, в результате которого ро-
дившиеся позитроны, пролетев небольшое расстояние (в среднем 3-4 мм [4]), ан-
нигилируют с электронами тканей, в результате чего рождаются два γ-кванта,
разлетающиеся на угол, близкий к 180◦. Отклонение от коллинеарности в сред-
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нем составляет около 0.23◦, что при 80-см диаметре кольца приводит к потере
в разрешении около 1.7 мм [5]. Энергия аннигиляционных γ-квантов составляет
511 кэВ. Частицы регистрируются при помощи расположенных вокруг источни-
ка излучения детекторов, на основании отклика которых строится визуализация,
отражающая местоположение опухоли в организме, её размеры и форму.

Таким образом, детекторы ПЭТ для человека должны удовлетворять следу-
ющему набору характеристик[1]:
1) эффективность регистрации отдельного γ-кванта с энергией 511 кэВ – не

ниже 80%;
2) пространственное разрешение – несколько миллиметров;
3) высокое временное разрешение, порядка нескольких наносекунд;
4) энергетическое разрешение < 100 кэВ ПШПВ при энергии 511 кэВ для от-

сеивания событий комптон-эффекта;
5) возможность работы при нагрузках до 105 − 106 c−1 · см2 временного окна.

1.2 СЦИНТИЛЛЯЦИОННЫЕ ДЕТЕКТОРЫ

Одним из элементов большинства установок по изучению частиц являют-
ся детекторы. Существует огромный спектр подобных приборов, разработанных
под определённые задачи: искровые камеры для изучения треков частиц, счётчик
Гейгера для подсчёта количества частиц, масс-спектрографы для изучения соста-
ва веществ.

Сцинтилляционные детекторы находят широкое применение для регистра-
ции частиц и, в частности, γ-квантов. Их популярность обусловлена высокой эф-
фективностьюи слабой зависимостью от энергии гамма-квантов в различных энер-
гетических диапазонах. Принцип работы таких детекторов основан на преобра-
зовании ионизирующего излучения в видимый свет при помощью сцинтилляци-
онного материала. Световой сигнал улавливается фотоумножителем, преобразует
его в электронный и усиливает, регистрируя его.

1.2.1 СЦИНТИЛЛЯЦИОННЫЕМАТЕРИАЛЫ

Сцинтилляционные вещества, как было сказано, реагируют на проходящие
через них потоки частиц, излучая некоторое количество фотонов пропорциональ-
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ное энергии пролетающей частицы. Благодаря чему появляется возможность по-
лучать энергетические спектры различных источников ионизирующих излуче-
ний. Существует большое количество сцинтилляционных материалов: пластико-
вые сцинтилляторы, характеризующиеся малым временем высвечивания, газовые
сцинтилляторы из азота и благородных газов, имеющие ещё более короткое время
высвечивания. Особое место занимают неорганические сцинтилляционные кри-
сталлы, для которых характерен высокий световыход и достаточное энергетиче-
ское разрешение, что позволяет говорить о энергетических характеристиках ис-
следуемых частиц и, соответственно, разделять их по энергиям. В таблицах 1.1 и
1.2 приведены интересующие нас характеристики некоторых сцинтилляционных
материалов.

Таблица 1.1 — Характеристики сцинтилляторов [6] *среднее значениe

Сцинтиллятор плотность
г
см2

Время Световыход,
ф
кэВ

высвечивания, нс
Полистирол 1.05 5 0.1
GAGG(Ce) 6.63 87(90%)255(10%) 56*
LYSO(Ce) 7.2 40 32
BGO 7.13 300 10

В качестве сцинтиллятора применяется сцинтилляционный кристалл
GAGG(Ce) (Gd3Al2Ga3O12(Ce), гадолиний-алюминий-галлиевый гранат, акти-
вированный ионами церия), произведённый компанией OST Photonics. Матери-
ал обладает привлекательными для гамма-спектрометров характеристиками, что
вызывает высокий интерес к его изучению, высокая плотность, так как при уве-
личении этого параметра кристалла кванты эффективнее теряют энергию в мате-
риале в силу зависимости этих величин, позволяя детектировать кванты высоких
энергий, высоким зарядовым числом, влияющим на сечение взаимодействия фо-
тоэффекта (σph ∼ Z5

eff ), сравнительно небольшим временем высвечивания, до-
статочно высоким световыходом(∼ 56000 ф/МэВ, T = 293K), что позволяет
более точно измерять энергию падающих на него γ-квантов при подходящих нам
значениях энергетического разрешения (∼ 9%), а также отсутствие гигроскопич-
ности и собственного излучения.

Как видно из таблицы 1.2, в сравнении с традиционными сцинтилляторами,
такими как NaI(Tl), CsI(Tl), BGO, или более современным его прямым конкурен-
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том в лице LYSO(Ce), выбранный нами кристалл не только не хуже, но и превосхо-
дит аналоги по многим параметрам. Кроме того, GAGG(Ce), как более новый сре-
ди остальных, является интересным с точки зрения изучения его характеристик.
Отдельно хочется отметить, что технология выращивания не является патентной,
что позволяет свободно в полной мере производить и закупать данные кристал-
лы повсеместно, но вносит свои особенности в разброс характеристик (например,
сильный разброс величины световыхода от производителя к производителю).

Как итог, GAGG(Ce) можем считать хорошей альтернативой кристаллов
LYSO(Ce), чаще всего использующийся в сцинтилляционных детекторах для за-
дач медицинской физики. GAGG представляет исследовательский интерес его
применимости совместно с кремниевыми фотоумножителями, принцип действия
которых отписывается далее, так как это относительно новый материал. В част-
ности, поскольку GAGG имеет относительно высокую плотность, он может быть
привлекательным вариантом для тех применений обнаружения γ-излучения, где
эффективность детектирования является критическим фактором, как, например,
ПЭТ, объединенная с магнитно-резонансным томографом (ПЭТ/МРТ). Сейчас про-
должаются исследования, которые показали, что в связи с активацией его на свету
и последующим продолжительным высвечивании есть необходимость предвари-
тельного выдерживания его в темноте для достижения наилучшего разрешения
детектора.

1.2.2 ФОТОУМНОЖИТЕЛИ

Вышедших из сцинтиллятора фотонов достаточно мало чтобы обрабаты-
вать напрямую сигнал с какого-либо фотоприёмника. Для устранения этого недо-
статка применяются особые фотоприёмники, содержащие в своей конструкции
преобразователи попадающих на них фотонов в электроны с последующим умно-
жением числа частиц. Одним из подобных устройств являются фотоэлектронные
умножители, представленный на рисунке 1.1.

8



Таблица 1.2 — Сравнительные характеристики распространенных сцинтилляци-
онных кристаллов. [7—10]

CsI(Tl) LYSO(Ce) BGO NaI(Tl) GAGG(Ce)
Плотность
(г/см2)

4,51 7,2 7,13 3,67 6,63

Эффективный
Zeff (атомный)
номер

54 65 73 50 54,4

Длина волны
max высве-
чивания (нм)

550 420 480 415 520

Время вы-
свечивания
(нс)

1050 40 300 230 87(90%)255(10%)

Световыход
(фото-
ны/кэВ)

54 32 10 38 40-45

Гигроско-
пичность

ДА НЕТ НЕТ ДА НЕТ

Собственная
радиоактив-
ность

НЕТ ДА НЕТ НЕТ НЕТ

Рисунок 1.1 — Схема ФЭУ

Фотон проходит через кварцевое окно и, попадая на полупрозрачный фо-
токатод, рождает фотоэлектрон, который в свою очередь падает на динод, выби-
вая несколько вторичных фотоэлектронов, которые летят к следующему диноду
и далее, пока волна фотоэлектронов в сотни тысяч раз большая, чем одна части-
ца, не достигнет анода. Такие фотоприёмники являются достаточно громоздкими,
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требуют сложных в изготовлении источников питания, восприимчивы к внешним
магнитным полям, что усложняет их использование в паре с МРТ, а также явля-
ются достаточно хрупкими, из-за чего требуют в эксплуатации особой осторож-
ности.

Решением в области детектирования слабых излучений являются кремние-
вые фотоумножители (SiPM), представленные ниже на рисунке 1.2.

а б

Рисунок 1.2 — Кремниевый фотоумножитель от компании Onsemi (а) и принци-
пиальная схема кремниевого фотоумножителя (б)

Данный фотоприёмник представляет из себя матрицу полупроводниковых
лавинных фотодиодов (ЛФД, SPAD), работающих в гейгеровском режиме. При-
мер принципиальной схемы SiPM представлен на рисунке 1.2б, у разных произ-
водителей схемы могут отличаться. В схеме резистивный элемент нужен для пас-
сивного гашения лавины. За счёт своих малых габаритов и высокого коэффици-
ента усиления (порядка 106) SiPM не только приходит на замену ФЭУ во многих
задачах, но и выходит за пределы применимости этого типа фотоприёмников в об-
ласти компактности и устойчивости к внешним магнитным полям и используется
для детектирования различных слабых сигналов. [11]

В нашей установке применяются кремниевыефотоумножители (SiPM)Onsemi
FC30035.

Данные фотоумножители отличаются от своих конкурентов достаточно низ-
ким рабочим напряжением питания (30 В), а также высоким значением эффектив-
ности регистрации фотонов (PDE) и малым разбросом напряжения пробоя. Эта
линейка датчиков обладает высоким коэффициентом усиления [12], чувствитель-
ных в однофотонном режиме от ультрафиолетового до инфракрасного диапазона
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Размер Размер Параметр Тип.
сенсора ячейки
3мм 35µ Напряжение 24.2 - 24.7

открытия (Vbr, В)

Пик длины волны (λp), 420
нм

PDE, % 31(Vbr + 2.5)В

Усиление 3× 106

Темновой счёт, кГц 300 - 860

Таблица 1.3 — Характеристики кремниевого умножителя Onsemi FC30035

при значении длины волны 420 нм.

Рисунок 1.3 — Зависимость PDE от длины волны при разных значениях перена-
пряжения

На рисунке 1.3 представлена зависимость PDE от длины волны регистриру-
емого излучения для различных значений напряжения смещения. Данный пара-
метр является отражением чувствительности кремниевого фотоумножителя, или
отношением числа частиц, зарегистрированных за время измерения к числу ча-
стиц, попавших в детектор за тоже время. Определяется как:

PDE(λ, T, U) = QE(λ, T )EgPG(λ, T, U) (1.1)
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где QE(λ) – квантовая эффективность чувствительной площади фотодетек-
тора, λ – длина волны регистрируемого излучения, Eg – геометрическая эффектив-
ность, равная отношению чувствительной площади, к полной площади кремни-
евого фотоумножителя, PG(λ, T, U) – вероятность того, что образовавшийся фо-
тоэлектрон вызовет пробой, значение которой возрастает с увеличением перена-
пряжения U , зависящего от температуры T .

Для каждого датчика собрана схема подключения на индивидуальной плате,
питание которой осуществляется от единого источника. Для дальнейшей калиб-
ровки SiPM были определены рабочие точки, которые представляют собой оп-
тимальное значение напряжение смещения, при котором достигается наилучшее
энергетическое разрешение детектора. Этот параметр зависит от коэффициента
усиления, растущего при увеличении напряжения, и PDE.

Производитель в технической документации указывает среднее значение
напряжения пробоя, однако существует необходимость тестировать каждый от-
дельно, так как, на практике, у разных SiPM одной серии они могут значительно
отличаться.

1.3 ПЛАТА PETIROC 2A

За основу установки взята тестовая плата на базе интегральной схемы спе-
циального назначения (ASIC) Petiroc 2A, разработанная компанией Weeroc. Дан-
ная интегральная микросхема создавалась специально для считывания данных c
SiPM), в том числе измерение времени срабатывания детекторов с последующим
анализом и обработкой в соответствующем ПО.

Чип обладает набором из 32-х биполярных каналов, к которым можно под-
ключить как одиночные SiPM, так и целые матрицы. Основная концепция данной
микросхемы – комбинирование двух измерений (времени регистрации сигнала и
его амплитуды) независимым образом. Временной триггер срабатывает по перед-
нему фронту сигнала (начало сцинтилляционной вспышки), амплитудное значе-
ние достигается, когда большая часть фотонов вспышки собрана на SiPM, а за
амплитуду – величина засвета всего сцинтилляционного кристалла.

Сигнал с фотоумножителя поступает на плату и разделяется на два: времен-
ную и зарядовую ветвь. Первичный отбор производится на основе срабатывания
триггера временного канала, также могут быть применены отборы на основе триг-
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гера зарядового канала и на основе совпадений.

Рисунок 1.4 — Принципиальная схема тестовой платы Petiroc 2A

Пришедший сигнал, предварительно усиленный на предусилителе, оциф-
ровывается с помощью аналогово-цифрового преобразователя, а полученные ве-
личины передаются в ячейки памяти (по четыре ячейки на событие для каждого
канала), которые затем силами как прилагаемого программного обеспечения, так
и при помощи стороннего, можно проанализировать и получить необходимые ре-
зультаты.

1.4 МАКЕТ 32-КАНАЛЬНОГО ПЭТ

Макет 32-канального ПЭТ (позитронно-эмиссионный томограф) представ-
ляет собой установку, разработанную лабораторией детекторов ядерной медици-
ны НИЯУ «МИФИ» и НИЦ «Курчатовский институт». Сцинтилляционные детек-
торы размещаются в специальных канавках, сделанных внутри поликарбонатово-
го кольца, что придаёт установке прочность и избавляет от нежелательных смеще-
ний. Внешний радиус кольца составляет 160 мм, внутренний – 90 мм, толщина –
10 мм. Всего размещено 32 детектора, что связано с ограничениями электроники
– анализатор не рассчитан на большее число каналов. Сбор сигнала осуществля-
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ется через шлейф, присоединенный на входные pin-контакты платы. Установка в
сборе представлена на рисунке 1.5.

Рисунок 1.5 — Внешний вид макета 32-канального ПЭТ

1.5 ХАРАКТЕРИСТИКИМАКЕТА 32-КАНАЛЬНОГО ПЭТ

Ранее собранный макет 32-канального ПЭТ проходил проверку на различ-
ных источниках, благодаря чему удалось изучить ряд его характеристик. Для дан-
ных исследований была подготовлена отдельная установка, представляющая со-
бой чёрный ящик, внутри которого располагается детекторная сборка и необходи-
мая для работы с ней электроника [13], были измерены характеристики откликов
каналов, такие как положения пика, а также энергетическое разрешение для раз-
личных комбинаций SiPM и сцинтиллятора, дополнительно получены данные по
энергетическому разрешению для одиночного детектора. Так, для пика в области
662 кэВ, изображённого на рисунке 1.6, источника 137Cs, составило ∼ 8%, что
позволяет различать его с приемлемой точностью.
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Рисунок 1.6 — Спектр источника 137Cs, полученный на установке для тестирова-
ния кремниевых фотоумножителей и сцинтилляционных кристаллов

Рисунок 1.7 — Спектр источника 44Ti, полученный на одном канале макета 32-
детекторного ПЭТ

В качестве второго источника для изучения характеристик установки был
выбран 44Ti за счёт своей моды низкоэнергетического β+-распада, что позволяет
использовать его в качестве эталона для восстановления изображения с макета
32-канального ПЭТ. Источник размещался в центре установки и для каждой про-
тивоположной пары детекторов производился поиск совпадений в заданном вре-
менном окне. Для данного изотопа получено энергетическое разрешение 14% для
пика 511 кэВ (рисунок 1.7), а временное разрешение составило порядка 1.8 нс. О
результатах данных исследований было доложено в рамках международной кон-

15



ференции AYSS, прошедшей в ОИЯИ в Дубне, информация по докладу изложена
в статье [14].
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2 ПОДСТРОЙКА НАПРЯЖЕНИЙ НА КАНАЛАХ

В рамках работы, проделанной в прошлом семестре, была предложена мо-
дифицированная система подстройки напряжений на базе решения от компании
Texas Instruments, операционный усилитель ”Rail-to-Rail” с диапазоном напря-
жений питания 4.5..40В, а также малым температурным дрейфом (±1.5µB/◦C).
Микросхема распространяется в планарном виде, что сподвигло перевод на пла-
нар и большинство других компонентов. Подобный переход способствует резкому
уменьшению площади, занимаемой электроникой, а также значительному уплот-
нению монтажа.

2.1 МАСШТАБИРОВАНИЕ СИСТЕМЫНА 8 КАНАЛОВ

После тестирования двуканальной платы принято решение провести её мас-
штабирование. Для этого разведена и изготовлена полноценная плата прототипа
на 8 каналов. Элементная база сохранена, пробные резисторы заменены аналогич-
но на планарные компоненты. В ходе разработки создан восьмиканальный модуль
для подстройки напряжений с цифровым управлением, функциональная схема ко-
торого представлена на рис. 2.1.

Рисунок 2.1—Схема универсального блока подстройки напряжений на 8 каналов
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2.1.1 ЦИФРОВОЕ УПРАВЛЕНИЕ. ATMEGA328P

Вкачестве микроконтроллера, осуществляющего управление электроникой,
аналогично выбрана микросхемаATmega328P, функциональная схема которой пред-
ставлена на рисунке 2.2.

Это достаточно распространённый 8-битный RISC-процессор, работающий
на частоте 16 МГц за счёт внешнего резонатора. Данный микроконтроллер под-
держивает различные протоколы для взаимодействия с внешними устройствами,
такие как I2C (TWI) и RS-232, что позволяет выбрать необходимые электронные
компоненты из достаточно обширного списка кандидатов, используя при этом
возможности самого процессора для управления. В то же время, наличие встро-
енного 10-разрядного аналого-цифрового преобразователя (АЦП) позволяет под-
держать необходимое для системы управления измерение напряжений (с «гряз-
ной» точностью до 15мВ) без использования внешних устройств.

Рисунок 2.2 — Функциональная схема микроконтроллера ATmega328P

В то же время, для поставленной задачи прерывания играют очень важную
роль в алгоритме управления выходным напряжением на каналах, обеспечивая
непрерывный процесс его измерения при помощи АЦП и записи данных для кор-
рекции кода цифро-аналогового преобразователя (ЦАП).
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2.1.2 ЦИФРОВОЕ УПРАВЛЕНИЕ. ЦАП

В качестве устройства, устанавливающего выходное напряжение на опера-
ционном усилителе был выбран ЦАП MCP4725. Данная микросхема поддержи-
вает подключение к микроконтроллеру по интерфейсу I2C, что позволяет легко
масштабировать модуль на большее число каналов (до восьми штук на микрокон-
троллер), сохраняя при этом большинство входов микроконтроллера свободными
для прочих задач. ЦАП обладает разрядностью 12 бит, что позволяет выставлять
напряжение на канале с точностью до 7 мВ. Подобная разрядность при грамотном
алгоритме подстройки напряжений позволяет компенсировать меньшую точность
АЦП, поднимая точность до единиц милливольт. Принципиальная схема включе-
ния ЦАПов для двух каналов представлена на рисунке 2.3.

Рисунок 2.3 — Схема включения ЦАП MCP4725

Заметим, что идеология включения каналов сохраняет попарную компонов-
ку, что связано напрямую с конфигурацией операционного усилителя (два на од-
ном кристалле с общим питанием). Как было описано выше, микроконтроллер
ATmega328P оснащён встроенным 10-битным АЦП для проведения оцифровки
сигнала с опорным напряжением 1.1В, что не позволяет подавать на вход микро-
контроллера полное напряжение на канале. Для решения этого вопроса на пла-
те добавлены соответствующие резистивные делители R1 и R4, а также R2 и R3.
Благодаря качественному подбору резисторов коэффициент передачи по посто-
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янному току составил значение K =
R3

R2 +R3
≈ 0.033, что в максимуме даст нам

напряжение Umax = 30 × K = 0.99В. Для выбора требуемого ЦАП (по умол-
чанию адрес задан как 0) применяется инверсный дешифратор (DC), благодаря
которому выбираемый канал откликается на нужный адрес. Для обеспечения мас-
штабирования из-за малого числа аналоговых входов на микроконтроллере, выхо-
ды, с которых снимается напряжение, подключены к чипу через мультиплексор
RS2099. Выбор соотвествующих для измерения групп каналов осуществляется
через управление входом INT1-2, при этом часть выходов подключена к нормаль-
но закрытым, а часть к нормально открытым входам микросхемы (см. рис. 2.1).

При поведении измерений под контролем температуры система показала
высокую стабильность: в четырёхчасовом эксперименте напряжение на выходе
системы оказывалось полностью стабильным. Однако даже при грамотном под-
боре электронных компонентов итоговые значения напряжений для одного и того
же кода ЦАП могут значительно отличаться, вплоть до 100мВ. Наличие данного
фактора требует введения в алгоритм подстройки некого механизма управления,
чтобы ликвидировать такие отклонения.

2.1.3 ЦИФРОВОЕ УПРАВЛЕНИЕ. МЕХАНИЗМ ОБРАТНОЙ СВЯЗИ

Как было замечено ранее, конечные значения напряжений для одного и того
же кода ЦАП могут значительно отличаться от канала к каналу, что не позволяет
ограничиваться выставлением одинакового значения кода. Чтобы нивелировать
данную проблему, было принято решение интегрировать в разработанное ПО ме-
ханизм обратной связи, осуществляющий автоматическую и точную подстройку
напряжений на канале, алгоритм управления представлен на рисунке 2.4.
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Рисунок 2.4 — Схема включения ЦАП MCP4725

Микроконтроллер получает ожидаемый на выходе код АЦП SpAI. При по-
мощи встроенного АЦП производится измерение текущего напряжения на канале
uAI, после чего полученный код сравнивается с ожидаемым. В случае отклоне-
ния, на регулятор подаётся соответствующее управляющее воздействие ∆, кото-
рое добавляет (или отнимает) соответствующую величину к текущему коду ЦАП
и отправляет по I2C новое его значение uAO. ЦАП, в свою очередь, выставляет
соответствующее коду напряжение в диапазоне 0..5В, подаваемое на вход опера-
ционного усилителя, что вызывает выставление нового значения напряжения на
канале. Далее процесс продолжается, пока код АЦП не перешагнёт уставку SpAI.
После чего управляющее воздействие уменьшается вдвое, инвертируется и про-
цесс повторяется. Зависимость кода АЦП от времени представлена на рисунке
2.5.
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Рисунок 2.5 — Зависимость выходного напряжения схемы от времени, за ∆0

управляющее воздействие в 32 единицы, деление на два осуществляется путём
битового сдвига на 1

Заметим, что микроконтроллер занимается только выставлением соответ-
ствующего кодаЦАП, вся калибровка соответствующих преобразований находит-
ся на стороне клентского приложения, исполняющегося на ПК.

2.1.4 ЦИФРОВОЕ УПРАВЛЕНИЕ. ПРОГРАММНОЕ ОБЕСПЕЧЕНИЕ

Для взаимодействия с электроникой блока подстройки напряжений было
разработано программное обеспечение (ПО) для персональных компьютеров (ПК),
работающих на операционной системе Windows, интерфейс приведён на рисунке
2.6.
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Рисунок 2.6—Интерфейс программного обеспечения. Основное диалоговое окно
без подключения к электронике

ПОпредставляет собой диалоговое окно, разработанное при помощифрейм-
воркаMicrosoft Foundation Classes (MFC), представленного корпорациейМайкро-
софт совместно с выходом Windows 95/NT4 (и до сих пор поддерживаемого), что
заметно упрощает разработку оконных приложений и по сей день. По умолчанию
персональный компьютер не подключен к блоку подстройки, взаимодействия с
устройством осуществляется после нажатия кнопки Connect. После успешного
подключения к блоку подстройки экран диалогового окна видоизменяется (рису-
нок 2.7), в таблице Protocol появляется доступ к информации о передаче данных
(опционально, можно активировать, поставив галочку в соответствующем поле),
также отображается информация о текущем состоянии каналов в таблице сверху
и данные о температуре и влажности в соответствующих строках. Под информа-
цией о микроклимате также присутствует системная информация о датчике влаж-
ности.
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Рисунок 2.7—Интерфейс программного обеспечения. Основное диалоговое окно
после подключения к электронике

Выбор канала, над которым требуется произвести манипуляции подстрой-
ки, осуществляется из списка при помощи двойного нажатия по нему, после чего
перед пользователем возникает диалоговое окно (рис. 2.8).
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Рисунок 2.8—Интерфейс программного обеспечения. Основное диалоговое окно
управления каналом после подключения к электронике

Для осуществления работы механизма обратной связи, обеспечивающий га-
рантированную точную подстройку, пользователь, используя ПО, устанавливает
требуемое напряжение на канале в поле Vout. С учётом коэффициентов, получа-
емых в ходе предварительной калибровки, ожидаемое напряжение преобразовы-
вается в ожидаемый код АЦП SpAI и передаётся через USB интерфейс на мик-
роконтроллер по протоколу USART. ПО поддерживает выставление желаемого
напряжения, преобразующегося в необходимый код АЦП посредством предвари-
тельной калибровки, а также выставление необходимого кода цифро-аналогового
преобразователя. Заметим, что при выставлении кода ЦАП механизм подстрой-
ки не поддерживается, и скорость подстройки зависит только от физических ха-
рактеристик электроники (скорости канала связи в случае увеличения, и времени
разрядки RC-цепочки в противном случае). При этом регулирование кода ЦАП
производится не чаще, чем раз в 1 секунду, что связано с необходимостью за-
вершения всех переходных процессов (взято с большим запасом), а также в том
случае, если разница кодов АЦП между соседними измерениями не превышает 4
единицы.

2.2 ОПИСАНИЕ УСТАНОВКИ

Тестирование схемыподстройки производилось при помощи установки, при-
меняемой ранее во время подготовки тестового образца.ПлатаArduino, на которой
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распаян микроконтроллер ATmega328P запитывается от собственного источника
питания +9В, оснащённого сетевым фильтром для подавления вредоносных по-
мех и наводок в цепи питания. Все земли объединены в один общий земляной
контур.

Как и в случае с предыдущими итерациями, нам очень важно исследовать
поведение АЦП для корректной калибровки каналов, чтобы алгоритм подстрой-
ки выставлял ожидаемое выходное напряжение. При помощи источника пита-
ния +30В была получена зависимость выходного напряжения (Uout) от кода АЦП.
При помощи линейной аппроксимацииМНК из экспериментальных данных были
получены коэффициенты пересчёта, используемые в дальнейшем для алгоритма
подстройки напряжений. Для исследования поведения АЦП из линейной аппрок-
симации рассчитано отклонение выходного напряжения от ожидаемого теорией
значения. Измерения и расчёты проведены для всех восьми каналах установки
(рисунки 2.9 и 2.10).

Рисунок 2.9 — Зависимость тангенсов угла наклона и смещений линейной ап-
проксимации каналов от их номера
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Рисунок 2.10— Зависимость напряжения на канале (Uout) и отклонения выходно-
го напряжения от ожидаемого значения, полученное из линейной аппроксимации
при помощи МНК, в зависимости от кода АЦП для каналов 0 (а) 4 (б) и 6 (в)
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Из рисунка 2.9 видно, что тангенсы угла наклона (на графике отмечены си-
ними точками) имеют достаточно близкие значения (наибольшее отклонение ве-
личины не превышает 0.3%), что говорит об относительно линейной характери-
стике каналов. В то же время, наблюдается значительный разброс коэффициентов
смещения калибровочной прямой (наибольшее отклонение величины составляет
53%). Подобный разброс связан в первую очередь с неоднородностью напряже-
ния смещения операционных усилителей, которое в том числе и позволяет убрать
такая калибровка.

Линейность калибровочных прямых всё также сохраняется (см. рис. 2.10).
Заметим, что зависимость отклонения выходного напряжения от ожидаемого зна-
чения от кода АЦП в отличие от тестовой платы (рис. 2.11) уже носит случайный
характер и не наблюдается восходящий тренд. В то же время, для всех каналов
наблюдается наличие явного пика при значении кода АЦП, равному 500 (1/2 ко-
дов АЦП) у распределения отклонения выходного напряряжения от ожидаемого
значения. Такой феномен связан с принципом работы АЦП последовательного
напряжения.

а б

Рисунок 2.11 — Зависимость напряжения на канале (Uout) и отклонения от ожи-
даемого значения, полученное из линейной аппроксимации при помощи МНК, в
зависимости от кода АЦП для канала 1 (а) и 2 (б)

На рисунке 2.12 представлена восьмиканального модуля подстройки напря-
жения. Плата содержит полноценные восемь каналов, выходное напряжение сни-
мается со стандартизированного разъёмаDB-25, что упрощает подключение элек-
троники детекторов к плате.
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Рисунок 2.12 — Восьмиканальный модуль подстройки напряжения

2.3 ПУТИ УЛУЧШЕНИЯ

Текущая версия платы является готовым решением для подстройки напря-
жения на восьми каналах. В то же время текущее решение имеет большой потен-
циал для глубокой модификации. Установка разъёма DB-25 позволила помимо
вывода выходных напряжений питания (в месте с землёй) также вывести интер-
фейс I2C и напряжения питания, что позволит внедрить дополнительную плату
для измерения тока, потребляемого каждым каналом, при этом без необходимости
модифицировать разъём для подключения к электронике детекторов.

Также были предложены некоторые усовершенствования для программно-
го обеспечения, которые сделают опыт взаимодействия пользователя с ПО более
комфортным. В частности, предложены методы сохранения конфигурации напря-
жений на каналах, способы их создания, сохранения и загрузки, а также некоторое
упрощение интерфейса. Для большей универсальности ПО следует уходить от те-
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кущего оконного фреймворка в пользу поддерживающих также ОС Linux (напри-
мер Qt).
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ЗАКЛЮЧЕНИЕ

Данная работа посвящена продолжению разработки метода подстройки на-
пряжения на базе микроконтроллера ATmega328P.

Произведено масштабирование электроники отработанной тестовой платы,
разработанной в прошлом семестре, на восемь каналов. Для доработанной схе-
мы подстройки напряжения представлена модификация цифрового управления
на базе микроконтроллера ATmega328P и 12-разрядного ЦАП. Доработано при-
ложение для микроконтроллера и ПК для текущего модифицированного обору-
дования и проверки его работоспособности на восьмиканальной плате. Проведе-
на соответствующая калибровка измерительных каналов для корректной работы
программного обеспечения. Проведён анализ калибровки восьми каналов. Пока-
зано, что предложенное решение не зависит от электроники подстройки, так как
вся логика выставления кодов находится только на стороне программного обес-
печения. Схема имеет высокий потенциал к модификации в следствие лёгкости
добавления нового модуля для измерения потребляемого блоком детекторов тока,
что поможет фиксировать выход из строя SiPM или их засветки, засчёт внедрения
унниверсального выходного разъёма.
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