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1. ВВЕДЕНИЕ

Стандартная модель (СМ) — это теория элементарных частиц и их взаи-
модействий. СМ считается неполной, так как не объясняет ряд процессов и яв-
лений, таких как гравитационное взаимодействие, состав темной материи [1],
проблему иерархии поколений фермионов [2] и существование нейтринных
осцилляций [3]. Для преодоления этих трудностей требуется расширение СМ.
Явления, выходящие за ее рамки, называют «новой физикой».

В современной физике частиц сложилось два подхода к поиску «но-
вой физики»: прямой и косвенный. Первый — заключается в детектировании
подлинного рождения частиц по продуктам их распада, как это было сделано,
например, при открытии бозона Хиггса экспериментами Большого адронного
коллайдера [4]. Второй — состоит в изучении взаимодействий уже известных
частиц и имеет преимущество в том, что он позволяет искать проявления но-
вой физики при энергиях, меньших по сравнению с массами новых частиц. В
данной работе рассматривается последний метод поиска физики за предела-
ми СМ и реализуется в поиске аномальных вершин взаимодействий. Таким
образом, рассматриваемый в работе метод является модельнонезависимым и
позволяет искать «новую физику», не привязываясь к требованиям конкрет-
ной модели.

Формализм вершинной функции позволяет параметризовать взаимодей-
ствия Z-бозонов и фотонов, которые запрещены в СМ и поэтому называются
аномальными. В качестве параметров выступают коэффициенты связи, ко-
торые являются неизвестными величинами, но на них возможно поставить
пределы, и это будет означать наложение ограничений на проявления физи-
ки за рамками СМ. Для поиска аномальных взаимодействий в данной работе
используется процесс рождения Zγ → νν̄γ в pp-столкновениях, потому что
он обладает высокой чувствительностью к нейтральным трехбозонным взаи-
модействиям. Для анализа выбран нейтринный канал, потому что адронный
канал имеет большой фон от адронных струй, не поддающийся контролю, а
лептонный — меньшую вероятность распада [5].

Целью данной работы является поиск отклонений от СМ в процессе
рождения Z(νν̄)γ. В рамках поставленной цели нужно выполнить следующие
задачи:

1. рассчитать теоретическое интегральное и дифференциальное сечение
Z(νν̄)γ, оценить их статистические и систематические неопределенно-
сти;

3



2. определить чувствительную к аномальным взаимодействиям перемен-
ную процесса;

3. поставить пределы на коэффициенты связи аномальных вершин, ис-
пользуя полную статистическую модель;

4. проверить, являются ли полученные пределы унитаризованными.
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2. ДЕТЕКТОР АТЛАС

Большой адронный коллайдер (БАК) [6] — самый крупный и мощный
ускоритель частиц на данный момент. При его проектировании была заложена
способность сталкивать пучки протонов с энергией центра масс

√
s = 14 ТэВ.

Встречные пучки протонов пускают по двум вакуумным трубам, которые пе-
ресекаются в четырех участках кольца, определяющих местоположение ос-
новных экспериментов коллайдера, одним из которых является АТЛАС [7].

Схема детектора приведена на рисунке 2.1. АТЛАС представляет собой
большой многоцелевой детектор для изучения высокоэнергетичных частиц.
Его длина составляет 43 м, диаметр 22 м, вес 7 тысяч тонн. Он находится под
землей на глубине 100 м. Его основными элементами являются: внутренний
детектор, электромагнитный и адронный калориметр, мюонный спектрометр,
система магнитов.

Рисунок 2.1 — Схема детектора АТЛАС в разрезе

2.1. СПЕЦИАЛЬНАЯ СИСТЕМА
КООРДИНАТ

Для описания процессов, регистрируемых детектором АТЛАС, исполь-
зуют специальную систему координат. Начало системы координат соответ-
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ствует точке взаимодействия пучков. Ось x ориентируется от точки взаимо-
действия к центру кольца БАК, ось y направляется вверх, ось z определяется
по правилу правой руки. Азимутальный угол ϕ измеряется вокруг оси пучка,
полярный угол θ отсчитывается от оси пучка до радиус-вектора. Для анализа
в физике частиц используют другую кинематическую переменную, называе-
мую псевдобыстротой. Она определяется следующим выражением

η = − ln tan
θ

2
. (2.1)

Данная переменная удобна при анализе протон-протонных столкновений, так
как распределения по ней более равномерные, чем по полярному углу. Рас-
стоянием ∆R в пространстве псевдобыстрота-азимутальный угол называют

∆R =
√

∆η2 +∆ϕ2. (2.2)

Поперечный импульс определяется через компоненты трехмерного импульса
следующим образом:

pT =
√

p2x + p2y. (2.3)

Поперечная энергия вычисляется так

ET = E sin θ. (2.4)

Стоит отметить, что в случае фотона ET = pT . Поперечный импульс
является инвариантным при продольных преобразованиях Лоренца, поэтому
его использование оказывается удобным при анализе. Если баланс попереч-
ного импульса нарушен, т.е. сумма (векторная) поперечных импульсов конеч-
ных зарегистрированных частиц не равна нулю, как это было до столкно-
вения, то это указывает на наличие в конечном состоянии процесса частиц,
не регистрируемых детектором АТЛАС. Такой частицей является, например,
нейтрино, которая слабо взаимодействует с веществом и не оставляет сле-
да в детекторе. Частицы такого рода являются основной причиной появле-
ния недостающего поперечного импульса pmissT . Его можно найти, измерив
компоненты импульса px и py конечных частиц и зная, что до столкнове-
ния они были равны нулю, можно определить потерянные компоненты pmissx

и pmissy , которые будут являться составляющими недостающего поперечно-
го импульса −→p miss

T = {pmissx , pmissy }. Недостающая поперечная энергия равна
Emiss
T = |pmissT |.
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2.2. ВНУТРЕННИЙ ДЕТЕКТОР

Внутренний детектор [8] — это первый слой вещества, через который
проходят частицы, возникающие в следствие столкновений пучков. Его диа-
метр и длина равны 2.1 м и 6.2 м соответственно. Он окружен центральным
соленоидом, создающим магнитное поле 2 Тл, позволяющее определять отно-
шение импульса к заряду частиц в диапазоне псевдобыстрот |η| < 2.5. Внут-
ренний детектор состоит из трех основных элементов: пиксельного детектора,
полупроводникового трекового детектора и трекового детектора переходного
излучения.

Пиксельный детектор, расположенный на расстоянии 3.3 см от оси БАК,
включает 92 миллиона кремниевых пикселей, что обеспечивает высокое про-
странственное разрешение 10 х 115 мкм2 и позволяет довольно точно опреде-
лить точку рождения и импульс частицы. Общая площадь чувствительных
элементов равна 1.9 м2. Далее следует полупроводниковый трековый детек-
тор, который содержит 4088 модулей, состоящих из 6 миллионов микрополос-
ковых кремниевых детекторов. Они позволяют восстанавливать траектории
частиц с точностью 25 мкм. Его общая площадь покрытия составляет 60 м2.
Задачей данного детектора является реконструкция треков заряженных ча-
стиц. Трековый детектор переходного излучения включает 350 848 тонкостен-
ных дрейфовых трубок, которые обеспечивают точность измерения 0.17 мм
и добавляют около 30 двумерных координат к реконструированным трекам в
области |η| < 2.0. Переходное излучение позволяет определить тип частицы.

2.3. КАЛОРИМЕТРЫ

Внутренний детектор окружен электромагнитными и адронными кало-
риметрами [7, 9], которые измеряют энергию частиц путем ее поглощения.
Калориметры обеспечивают эффективное удержание электромагнитных и ад-
ронных ливней, а также ограничивают проникновение частиц в мюонную си-
стему. Все калориметры в детекторе АТЛАС являются гетерогенными, то есть
детектирующее и поглощающее вещества чередуются слоями.

Ближайший к внутреннему детектору калориметр — электромагнит-
ный, использующий свинец в качестве поглотителя и охлажденный до -184°C
жидкий аргон в качестве детектирующего вещества. Его толщина на торцах
составляет 0.632 м, радиус — 2.077 м. Далее на торцах расположен калориметр
с медными поглотителями и жидким аргоном в качестве детектирующего ве-
ществ. Он состоит из двух колес толщиной 0.8 м и 1.0 м, радиусом 2.09 м.
Общая длина всей конструкции равна 6.4 м, толщина — 53 см. Внутри колес
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находится передний калориметр с тремя модулями радиусом 0.455 м и тол-
щиной 0.450 м. Первый модуль — электромагнитный с медным поглотителем,
другие два — адронные с вольфрамовым поглотителем.

Внешнюю боковую цилиндрическую часть всей системы калориметров
образует адронный калориметр из трех модулей, центральный из которых
имеет длину 5.8 м, а боковые — 2.6 м. Поглощающим материалом в нем яв-
ляется сталь, а детектирующим — сцинтилляционная плитка.

2.4. МЮОННЫЙ СПЕКТРОМЕТР И
ТОРОИДАЛЬНЫЕ МАГНИТЫ

Мюонный спектрометр [7] позволяет зарегистрировать и измерить им-
пульсы мюонов, энергии которых достаточно для прохода сквозь систе-
му калориметров. Мюонный спектрометр образует внешний слой детектора
АТЛАС, регистрирует мюоны в области |η| < 2.7 и состоит из пяти раз-
личных типов детекторов, а именно тонко-зазорных камер, мелкостриповых
тонко-зазорных камер, резистивных плоских камер, мониторируемых дрей-
фовых трубок, многопроволочных пропорциональных камер с катодом сег-
ментированным на стрипы и детекторов Micromegas [10]. Первые три типа
относятся к триггерным системам, последние три к координатным детекто-
рам, восстанавливающим траектории мюонов. Все эти детекторы регистри-
руют сигналы, возникающие, когда мюоны проходят через детекторы и иони-
зируют газ внутри.

Мюонный спектрометр помещен в магнитное поле напряженностью око-
ло 4 Тл, которое создают восемь тороидальных магнитов, в обмотке которых
течет ток 20.5 кА. Длина каждого магнита составляет 25 м, а внешний диа-
метр всей конструкции равен 20 м. На торцах детектора установлена похожая
конструкция, диаметром 10.7 м, для отклонения мюонов, вылетающих под
малыми углами к оси пучков. Для стабильной работы магниты охлаждаются
примерно до 4.5 К.

2.5. ТРИГГЕРЫ И ОТБОР ДАННЫХ

Внутри детектора АТЛАС происходит до 1.7 миллиардов протон-
протонных столкновений в секунду, что соответствует объему данных около
60 миллионов мегабайт в секунду. Записать такой поток данных затрудни-
тельно, поэтому среди всех событий отбирают наиболее интересные для физи-
ческого анализа. Система триггеров и сбора данных [11] позволяет сократить
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количество информации до управляемых масштабов. Данная система работа-
ет в два этапа. Сначала триггер первого уровня, выполненный на аппаратной
основе, получает информацию с отдельных частей детектора с частотой 40
МГц. Менее, чем за 2.5 с после возникновения сигнала триггер принимает
решение о том, нужно ли его сохранить. В течение этого времени данные о
событии хранятся в буферах хранения. Если событие находится в области
интереса, то оно передается на триггер второго уровня, основанного на про-
граммном обеспечении. Частота приема второго триггера составляет 100 кГц.
Всего за 200 мкс он подробно пересматривает решение предыдущего триггера
и использует дополнительные критерии отбора, если это необходимо. Триггер
второго уровня записывает события на диск с частотой около 1 кГц.
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3. ТЕОРЕТИЧЕСКОЕ ВВЕДЕНИЕ

3.1. СТАНДАРТНАЯ МОДЕЛЬ

Стандартная модель — теория об элементарных частицах, которая наи-
лучшим образом согласуется с экспериментальными данными [12]. Она вклю-
чает в себя теорию Вайнберга-Салама-Глэшоу, описывающую электрослабые
взаимодействия, и квантовую хромодинамику, которая описывает сильные
взаимодействия. СМ построена на теории полей Янга-Миллса с калибровоч-
ной группой SU(3)C × SU(2)L × U(1)Y .

Калибровочные поля, которые соответствуют ненарушенной группе
SU(3)C , описывают сильное взаимодействие. Здесь индекс C означает цве-
товой заряд. Прямое произведение групп SU(2)L × U(1)Y описывает единую
теорию электрослабого взаимодействия. Здесь индекс L означает, что группа
имеет фундаментальное представление только для левых частиц, а Y обозна-
чает гиперзаряд. При низких энергиях данная симметрия спонтанно наруша-
ется до группы U(1)эм, соответствующей классической электродинамике. При
этом необходимо отметить, что ненарушенная группа U(1)эм не совпадает с
группой U(1)Y .

Группа U(1)Y имеет один генератор Y/2, где Y —сохраняющийся гипер-
заряд и одно калибровочное поле Bµ. В группе SU(2)L имеются три генера-
тора σi/2, где σi — матрицы Паули (i = 1, 3), и три первичных калибровоч-
ных поля W i

µ. Так как эти матрицы не коммутируют между собой, SU(2)L-
симметрия является неабелевой. Генераторами SU(3)C являются величины
λi/2, где λi — матрицы Гелл-Манна (i = 1, 8). Они не коммутируют, поэтому
SU(3)C-симметрия является неабелевой.

Бозонами называют частицы с целым значением спина. Из известных
фундаментальных частиц к ним относятся фотон, глюон, W -бозон, Z-бозон
и бозон Хиггса. Фермионами называются частицы с полуцелыми значения-
ми спина. К фермионам СМ относятся лептоны и шесть кварков u, d, s, c, b, t.
Лептонам, в свою очередь, являются электрон e−, мюон µ, τ -лептон и три
нейтрино (νe, νµ, ντ ). Лептоны и кварки предполагаются бесструктурными
частицами, т.е. фундаментальными. Кварки, в отличие от лептонов, участ-
вуют в сильных взаимодействиях, являются составными частями адронов и
экспериментально в свободном виде не наблюдаются. Более подробная клас-
сификация элементарных частиц строится на квантовых числах. Три из них
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связывает между собой формула Гелл-Манна-Нисидзима [13]:

Q = T3 +
Y

2
, (3.1)

где Q — сохраняющийся электрический заряд, T3 — проекция слабого изоспи-
на, сохраняющаяся в электрослабых взаимодействиях величина в силу сим-
метрии SU(2)L × U(1)Y . Электрон, мюон и τ -лептон имеют заряд Q = −1,
нейтрино являются электрически нейтральными. Кварки u, c, t имеют элек-
трический заряд 2/3, а d, s, b — заряд −1/3 в единицах элементарного заряда
(e > 0). Согласно квантовой теории поля каждой частице соответствует анти-
частица. Частица и античастица имеют одинаковую массу, спин, время жизни,
что является следствием CPT-теоремы. Однако их заряды противоположны
по знаку. Кроме того, в СМ есть истинно нейтральные частицы, которые яв-
ляются сами себе античастицами. К ним относятся фотон, Z-бозон, бозон
Хиггса.

Лагранжиан электрослабой теории, описывающий частицы и их взаи-
модействия, имеет следующий вид [13,14]

L = Lψ + LY + LH + LG, (3.2)

где Lψ — лагранжиан, описывающий свободные фермионы и их взаимодей-
ствия с калибровочными бозонами; LY — лагранжиан, описывающий взаимо-
действие фермионов с бозоном Хиггса и массы фермионов; LH — лагранжиан,
описывающий свободный бозон Хиггса, его взаимодействие с калибровочны-
ми бозонами и их массу; LG — лагранжиан свободных калибровочных полей,
описывающих в т.ч. их самовзаимодействие.

3.2. ФОРМАЛИЗМ ВЕРШИННОЙ ФУНКЦИИ

При рассмотрении независимого от модели подхода к аномальным
взаимодействиям необходимо учитывать ряд желательных особенностей:
должна быть возможность восстановить СМ в соответствующем преде-
ле; теория должна быть общей, чтобы охватить любые явления за рам-
ками СМ; должна соблюдаться Лоренц-инвариантность. Кроме того, рас-
ширение СМ должно удовлетворять аксиомам унитарности, аналитичности
S-матрицы.

В конце 1970-х годов в физику элементарных частиц введены две кон-
цептуальные основы: эффективная теория поля (ЭТП) и формализм верши-
ной функции [15].
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В данной работе рассматривается вторая концепция, которая позволяет
исследовать конкретные вершины взаимодействий, в то время как каждый
оператор ЭТП, как правило, предсказывает много разных аномальных вер-
шин. Это является достоинством данного подхода.

Наиболее общее правило Фейнмана для функции взаимодействия
трех калибровочных бозонов V1V2V3 определено на рисунке 3.1.
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Figure 1: Feynman rule for the general V1V2V3 vertex.
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Рисунок 3.1 — Диаграмма Фейнмана для общей вершины V1V2V3

Вершинная функция взаимодействия трех векторных бозонов Z, γ, V ,
где V — γ или Z, имеет следующий вид [16–18]:

ΓαβµZγV (q1, q2, P ) =
i(P 2 −m2

V )

m2
Z

{
hV1 (q

µ
2 g

αβ − qα2 g
µβ)+

+
hV2
m2
Z

P α
[
(Pq2)g

µβ − qµ2P
β
]
−
(
hV3 + hV5

P 2

m2
Z

)
ϵµαβρq2ρ −

hV4
m2
Z

P αϵµβρσPρq1σ+

+
hV6
m2
Z

P 2[qα2 g
µβ − qµ2 g

αβ]

}
,

(3.3)

где q1, q2, P — импульсы Z, γ и V ; V — фотон или Z-бозон, находящийся вне
массовой поверхности, в то время как два других бозона находятся на мас-
совой поверхности; ϵµβρσ — символ Леви-Чивиты (антисимметричный псев-
дотензор); gαβ — метрический тензор; hVi — параметры тройной вершины
(i = 1, 6), mZ — масса Z-бозона. До сих пор величина коэффициентов hVi
неизвестна. Величины hVi — параметры взаимодействия, коэффициенты свя-
зи — являются безразмерными. Члены с параметрами hV1 , h

V
2 , h

V
6 нарушают

СР-инвариантность; в то время как члены с hV3 , h
V
4 , h

V
5 сохраняют ее.

Дополнительный множитель i введен для того, чтобы связанный с ним
эффективный лагранжиан «новой физики» был эрмитовым, его знак являет-
ся условностью [16].
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Подход с использованием вершинных функций является аналогом
лагранжевого подхода в импульсном пространстве. Аномальная добавка к
эффективному лагранжиану имеет следующий вид [16–18]:

L =
e

m2
Z

{
−[hγ1∂

σAσµ + hZ1 ∂
σZσµ]ZβA

µβ −
[ hγ2
m2
Z

∂α∂β∂
ρAρµ+

+
hZ2
m2
Z

∂α∂β(∂
2 +m2

Z)Zµ

]
ZαAµβ − [hγ3∂σA

σρ + hZ3 ∂σZ
σρ]ZαÃρα+

+
[ hγ4
2m2

Z

∂2∂σAρα +
hZ4
2m2

Z

(∂2 +m2
Z)∂

σAρα
]
ZσÃρα−

− [
hγ5
m2
Z

∂2∂σA
ρσ +

hZ5
m2
Z

∂2∂σZ
ρσ]ZαÃρα − [

hγ6
m2
Z

∂2∂σA
ρσ +

hZ6
m2
Z

∂2∂σZ
ρσ]ZαAρα

}
.

(3.4)

где Ãµν = 1/2ϵµνρσA
ρσ c Aµν = ∂µAν − ∂νAµ и аналогично для тензора напря-

женности поля Z-бозона.

3.3. МЕТОД ДЕКОМПОЗИЦИИ

Амплитуда процесса с учетом одного ненулевого коэффициента связи
может быть записана так:

A = ASM + hiAi, (3.5)

где ASM — вклад СМ в амплитуду, Ai — вклад в амплитуду «новой физики».
Квадрат модуля амплитуды в данном случае имеет следующий вид [18]:

|A|2 = |ASM|2 + hi2ReASM
†Ai + h2

i |Ai|2. (3.6)

Квадрат модуля амплитуды содержит слагаемое СМ, интерференционное (ли-
нейное) и квадратичное слагаемое. Пределы на коэффициенты в такой модели
называются одномерными [5].

В случае двух ненулевых коэффициентов квадрат модуля амплитуды
процесса принимает следующий вид:

|A|2 = |ASM|2 + h2
i |Ai|2 + h2

j |Aj|2 + hi2ReASM
†Ai + hj2ReA†

SMAj+

+ hihj2ReA†
iAj.

(3.7)

В данном случае квадрат амплитуды содержит слагаемое СМ, два квадратич-
ных, два интерференционных и еще одно слагаемое, называемое перекрест-
ным. Пределы в данном случае называются двумерными [5]. Метод декомпо-
зиции заключается в том, что наборы генерируются отдельно для каждого
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слагаемого квадрата модуля амплитуды, а потом применяются в статисти-
ческом методе, описанном в следующем разделе. На рисунке 3.2 приведен
пример распределения по поперечной энергии фотона для коэффициентов
hγ4 .
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Sum of terms

Рисунок 3.2 — Распределение по поперечной энергии фотона для СМ, квад-
ратичного, линейного слагаемых и их суммы для коэффициента hγ4 = 3 ·10−7

3.4. ТЕСТОВАЯ СТАТИСТИКА

В данной работе используется тестовая статистика, основанная на функ-
ции правдоподобия:

tµ = −2 ln
L(µ,

ˆ̂
θ(µ))

L(µ̂, θ̂)
, (3.8)

где µ — вектор параметров интереса, представляющий собой один коэффи-
циент связи в случае одномерной параметризации; L(µ, θ) — функция прав-
доподобия, которая в знаменателе находится в своем глобальном максимуме,
а в числителе — в локальном максимуме при фиксированном значении пара-
метров интереса.

Функция правдоподобия содержит в себе информацию о статистиче-
ской модели. Согласно теореме Уилкса [19], тестовая статистика имеет рас-
пределение χ2 с одной степенью свободы для оценки одного коэффициен-
та связи. Квантили этого распределения являются известными величина-
ми. В данной работе для получения пределов используется уровень дове-
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рия α = 0.95 (95% CL). Для такого уровня доверия квантиль распреде-
ления χ2 с одной степенью свободы равен 3.84. Одномерные пределы (т.е.
границы доверительного региона) определяются из условия tobs

µ = 3.84,
где tobs

µ — наблюдаемое значение тестовой статистики.
Для примера на рисунке 3.3 представлены графики зависимости на-

блюдаемого значения тестовой статистики от коэффициентов связи hγ1 и hγ4 ,
иллюстрирующий процедуру постановки одномерных пределов.
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Рисунок 3.3 — График зависимости (черный) тестовой статистики от коэффи-
циента связи a) hγ1 и б) hγ4 . Для построения функции правдоподобия в данном
случае была использована сигнальная область с дополнительным ограниче-
нием Eγ

T > 700 ГэВ на рисунке слева и Eγ
T > 900 ГэВ — справа. Точки пере-

сечения с линиями определяют границы доверительного интервала на уровне
доверия 95%

3.5. УНИТАРНОСТЬ S-МАТРИЦЫ И
КЛИППИНГ

S-матрица амплитуд вероятности перехода из начального состояния
квантовой системы в отдаленном прошлом (t → −∞) в конечное состояние в
отдаленном будущем (t → ∞) обладает свойством унитарности:

SS† = S†S = 1, (3.9)
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т.е. сумма вероятностей получить из начального состояния все возможные
конечные равна единице. Для выделения части S-матрицы, отвечающей вза-
имодействию, определяется инвариантная амплитуда T [20]:

S = 1 + iT . (3.10)

Из данного выражения и унитарности S-матрицы 3.9 следует:

T †T = 2ImT . (3.11)

Если взять матричный элемент обеих частей этого отношения между иден-
тичными состояниями двух тел и подставить в его левую часть полный набор
промежуточных состояний, получится [21]:∫

PS2

|Tel[2 → 2]|2 +
∑
n

∫
PSn

|Tinel[2 → n]|2 = 2ImTel[2 → 2], (3.12)

где слева интегралы по PS2 и PSn обозначает интегрирование в фазовом про-
странстве двух и n тел соответственно, во втором члене суммирование ведется
по всем неупругим каналам (n > 2). Если умножить слагаемые на 1/2ŝ, где√
ŝ — это энергия исходных частиц в системе центра масс, то слева получится

полное сечение процесса. Обозначение со шляпкой вводится, чтобы не возни-
кало путаницы с

√
s=13 ТэВ, введенной в главе 2. Таким образом, перед нами

появится стандартный вид оптической теоремы, которая утверждает, что мни-
мая часть амплитуды рассеяния вперед пропорциональна полному сечению
взаимодействия. Рисунок 3.4 наглядно иллюстрирует данное утверждение.

Рисунок 3.4 — Оптическая теорема. Мнимая часть амплитуды возникает за
счет вклада всех возможных многочастичных состояний [20]

Амплитуду T можно разложить по парциальным волнам. Для процесса
рождения Z-бозона с фотоном при аннигиляции фермиона f и антифермиона
f̄ амплитуду J-ой парциальной волны записывают следующим образом [17]:

aJ =
1

32π
ei(ν

′−ν)ϕ
∫ 1

−1

d(cosθ)dJ
ν′ν

(cosθ)T sfsf̄ ,λZλγ, (3.13)
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где ϕ и θ — азимутальный и полярный угол соответственно;
ν = sf − sf̄ = ±1 и ν

′
= λZ − λγ = 0,±1 — разность спирально-

стей начальных и конечных частиц соответственно. Исходя из значений
разности спиральностей, J = 0 не может быть использовано, т.к. нет
соответствующих d-функций Вигнера; при J = 2 и выше, амплитуды
парциальных волн обращаются в ноль, поэтому вклад дает только J = 1.
Соответствующие d-функции Вигнера удовлетворяют условию ортонор-

мировки
∫ 1

−1 dx dJ
ν′ν

(x)dJ
′

ν′ν
(x) =

2δJJ ′

2J + 1
и имеют вид d11,0 = −

1
√
2

sinθ и

d11,±1 = −
1

2
(1± cosθ). Предполагается ультрарелятивиский предел, т.е. массы

частиц в исходном состоянии много меньше
√
s. Из оптической теоремы

следуют ограничения на амплитуды парциальных волн и их действительные
части [17,21]:

|Re aJ | ⩽
1

2
, |aJ | <

1

2
. (3.14)

Применяя условие унитарности 3.14 к действительной части парциаль-
ной амплитуды при J = 1, получаются следующие оценки унитарности глав-
ных вкладов для четырех коэффициентов связи hV3,1 [18]:

|hZ3,1| <
6
√
2πv2mZ

sW cW (T3 −Qs2W )ŝ3/2
, |hγ3,1| <

6
√
2πv2mZ

s2W c2W |Q|ŝ3/2
, (3.15)

где v = (GF
√
2)−1/2 ≈ 246 ГэВ — вакуумное среднее поля Хиггса (где

GF - константа взаимодействия Ферми); Q — электрический заряд ферми-
онов в начальном состоянии; (sW , cW ) = (sinθW , cosθW ) — синус и косинус
угла Вайнберга; T3 = ±1/2 — проекция изоспина для левых фермионов,
T3 = 0 — для правых фермионов.

В данной работе были получены амплитуды для 4 коэффициентов связи
для различных комбинации спиральностей λZ и λγ:

hγ4 : T sfsf̄ (0±) = −
√
2Qe2

8m5
Z

√
ŝ(ŝ−m2

Z)
2(δ

sf ,
1
2
− δ

sf ,−
1
2
∓ cosθ), (3.16)

hγ5 : T sfsf̄ (0±) =

√
2Qe2

4m5
Z

ŝ3/2(ŝ−m2
Z)(δsf ,12

− δ
sf ,−

1
2
∓ cosθ), (3.17)

hγ5 : T sfsf̄

( −− −+

+− ++

)
=

Qe2

2m4
Z

ŝ(ŝ−m2
Z)sinθ

(
1 0

0 −1

)
, (3.18)
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hZ4 : T sfsf̄ (0±) =

√
2(T3 −Qs2W )e2

8cWsWm2
Z

ŝ1/2(ŝ−m2)2(δ
sf ,

1
2
− δ

sf ,−
1
2
∓ cosθ),

(3.19)

hZ5 : T sfsf̄ (0±) =

√
2(T3 −Qs2W )e2

4cWsWm2
Z

ŝ3/2(ŝ−m2)(δ
sf ,

1
2
− δ

sf ,−
1
2
∓ cosθ), (3.20)

hZ5 : T sfsf̄

( −− −+

+− ++

)
=

(T3 −Qs2W )e2

2m4
ZsW cW

ŝ(ŝ−m2
Z)sinθ

(
1 0

0 −1

)
. (3.21)

Путем подстановки 3.16 – 3.21 в формулу 3.13, получены амплитуды парци-
альных волн. В следствие их ограничения по условию 3.14, найдены следую-
щие границы унитарности:

|hZ4 | <
12
√
2πv2m3

Z

sW cW (T3 −Qs2W )ŝ5/2
, |hγ4 | <

12
√
2πv2m3

Z

s2W c2W |Q|ŝ5/2
, (3.22)

|hZ5 | <
6
√
2πv2m3

Z

sW cW (T3 −Qs2W )ŝ5/2
, |hγ5 | <

6
√
2πv2m3

Z

s2W c2W |Q|ŝ5/2
. (3.23)

Пределы, не удовлетворяющие условиям 3.15, 3.22, 3.23 называют неуни-
таризованными, т.е. они являются не физическими. Одним из методов унита-
ризации пределов является клиппинг, который заключается в том, что ано-
мальные вклады выключаются при энергии

√
ŝ > Eclip. (3.24)

Энергия Eclip называется энергией клиппинга. Для получения результа-
тов выбираются 4 – 5 значений Eclip, для каждого находятся пределы.
При Eclip = ∞ результатом окажутся неунитаризованные пределы, а при
Eclip = 0 пределы поставить нельзя. В данном анализе

√
ŝ — инвариант про-

цесса рождения векторных бозонов равен инвариантной массе нейтрино, ан-
тинейтрино с фотоном mνν̄γ. Тогда условие 3.24 будет выглядеть так:

mνν̄γ > Eclip. (3.25)

Стоит отметить, что при постановке пределов предсказание СМ, как и дан-
ные, остаются неизменными.
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4. ПРОГРАММНОЕ ОБЕСПЕЧЕНИЕ

Обработка данных в работе выполняется с помощью пакета ROOT [22].
ROOT является пакетом объектно-ориентированных программ и библиотек
для анализа данных, написанным на C++. В нем содержатся инструменты,
предназначенные для исследования статистических данных. Пакет обладает
возможноcтями разработки и графического представления данных.

4.1. МОНТЕ-КАРЛО МОДЕЛИРОВАНИЕ

Монте-Карло (МК) генераторы событий — это основные инструменты
для расчета теоретических предсказаний в физике высоких энергий, которые
учитывают процессы адронизации, развитие партонного ливня. Монте-Карло
моделирование производится в три этапа.

Первый этап называется партонным уровнем и заключается в расчете
квадрата модуля амплитуды и генерации событий в соответствии с данной
плотностью вероятности. В работе процесс рассчитан для ведущего порядка
теории возмущений (LO, leading-order). Основным в данной работе Монте-
Карло генератором партонного уровня является MadGraph5_aMC@NLO [23],
так как в нем присутствует возможность генерировать процессы в индивиду-
альных порядках по каждому параметру взаимодействия.

Следующим этапом моделирования физического процесса является уро-
вень адронизации — моделирование развитие партонного ливня и процессов
адронизации. Партонный ливень — это расщепление родительского парто-
на на несколько дочерних, а процесс адронизации — превращение рожденных
цветных частиц в адроны. Генераторами таких событий в данной работе явля-
ется Pythia8 [24]. События, получаемые на данном уровне, называются «truth
level», т.е. события истинного уровня. В работе используются результаты мо-
делирования в генераторах Sherpa [25, 26] и POWHEG [27], в которых есть
возможность смоделировать первые два этапа.

Последним этапом моделирования является уровень реконструкции, на
котором моделируется отклик детектора. Генераторами таких событий явля-
ются генератор Delphes3 [28], использующийся для более быстрой и приблизи-
тельной реконструкции, и генератор Geant4 [29], в котором есть возможность
произвести полную симуляцию детектора АТЛАС.
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4.2. EFTFUN

Программное обеспечение EFTfun [30] — инструмент коллаборации
АТЛАС, предназначенный для построения параметрической модели, описы-
вающей отклонение от СМ. EFTfun позволяет принимать во внимание линей-
ные и квадратичные вклады, ставить одномерные и двумерные ограничения
на параметры модели. Функционал программы дает возможность учитывать
большое количество различных теоретических и экспериментальных погреш-
ностей. Неопределенности могут быть применены избирательно к предска-
заниям СМ, к линейным, квадратичным членам, или ко всем компонентам.
Например, становится возможным учитывать статистические и систематиче-
ские неопределенности от каждого фонового процесса в отдельности. EFTfun
является инструментом, позволяющим создать более реалистичную статисти-
ческую модель.
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5. ИСПОЛЬЗУЕМЫЕ ДАННЫЕ

В данной работе рассматривается процесс рождения Zγ → νν̄γ в
pp-столкновениях, который изучается на БАК [5]. Эти исследования исполь-
зуются для проверки электрослабого сектора СМ и для поиска новых физиче-
ских эффектов, таких как аномальное взаимодействие Z-бозонов с фотонами.

Конечное состояние νν̄γ в СМ может быть получено при образовании
фотона и Z-бозона, распавшегося на нейтрино. Этот процесс иллюстрирует-
ся диаграммой Фейнмана ведущего порядка, показанной на рисунке 5.1 (a).
Пример диаграммы Фейнмана, содержащей аномальное трехбозонное взаи-
модействие калибровочных бозонов Z и γ показан на рисунке 5.1 (b). Такое
взаимодействие запрещено в СМ, но может возникнуть в теориях, расширя-
ющих СМ.
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Рисунок 5.1 — Диаграммы Фейнмана рождения Z(νν̄)γ: (а) в рамках СМ; (b)
за пределами СМ — включает в себя аномальную вершину ZZγ

Изучение процесса Z(νν̄)γ имеет ряд преимуществ перед процессами с
распадом Z на адроны или заряженные лептоны. С одной стороны канал с
адронами в конечном состоянии имеет большой многоструйный фон, который
подавляет чувствительность к аномальным взаимодействиям. С другой сто-
роны более высокая вероятность распада Z-бозона в нейтрино по сравнению
с заряженными лептонами дает возможность изучать рождение Zγ в обла-
сти с более высокой E γ

T , где чувствительность этого процесса к бозонным
взаимодействиям выше [5].

Физические процессы, в которых регистрируются конечные состояния,
характерные для Z(νν̄)γ, а именно фотон и недостающий поперечный им-
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пульс, являются фоновыми процессами. Основные источники фона в данном
исследовании:

• Wγ — рождение W -бозона с фотоном, где W -бозон распадается на ней-
трино и заряженный лептон, который не регистрируется детектором. В
случае рождения короткоживущего τ -лептона, он в свою очередь может
образовать либо лептоны, которые детектором не учитываются, либо
адронные струи, энергия которых неверно определяется;

• tt̄γ — фон, в котором W -бозон, родившийся в результате распада одного
или двух t-кварков, распадается по описанному в предыдущем пункте
каналу;

• γ+jet — рождение фотона со струями, в котором большое значение
E miss
T возникает из-за неверно измеренной энергии струй;

• Z(νν̄)j — рождение Z-бозона со струями в нейтринном канале, где струя
ошибочно регистрируется как фотон (jet → γ);

• W (eν), t, tt̄ — фоны, связанные с ошибочной регистрацией электрона
как фотона e → γ. Здесь в результате распада t-кварка, рождается
W -бозон, который распадается на eν;

• W (τν) — фон, в котором τ распадается в адроны и адронные струи
неверно идентифицируются как фотоны (jet → γ);

• Z(ll̄) + γ — рождение фотона и Z-бозона, распавшегося на лептоны, не
регистрирующиеся детектором.
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6. РЕЗУЛЬТАТЫ

6.1. ОЦЕНКА ТЕОРЕТИЧЕСКОГО СЕЧЕНИЯ

Перед началом исследования чувствительности процесса к аномальным
взаимодействиям важно убедиться в корректности его моделирования. Для
этого вычисляются предсказанные СМ интегральное и дифференциальные се-
чения процесса рождения Z(νν̄)γ без учета фоновых процессов и аномальных
вершин. Сечения вычисляются на уровне предсказаний порядка next-to-next-
to-leading с учетом партонных ливней NNLO(QCD)+PS [31]. При подсчете
сечений использовались критерии отбора объектов, полученные в работе [32]
и представленные в таблице 6.1.

Таблица 6.1 — Критерии отбора объектов

Фотоны Nγ = 1, Eγ
T > 150 ГэВ, |η| < 2.37

Струи |η| < 4.5, pT > 50 ГэВ , ∆R(jet, γ) > 0.3

Нейтрино pνν̄T > 130 ГэВ

В анализе были использованы результаты генерации Sherpa 2.2.2,
и неиспользованные до этого в исследовании результаты моделирования
POWHEG и новой версии Sherpa 2.2.11. В Sherpa 2.2.2 и Sherpa 2.2.11 процесс
смоделирован на уровне NLO(QCD)+PS [32].

6.1.1. ТЕОРЕТИЧЕСКИЕ ПОГРЕШНОСТИ

Статистическая погрешность моделирования вычислена методом взве-
шенных сумм [33] по формуле:

∆σ =

√∑
i

w2
i . (6.1)

В данной работе систематическая неопределенность оценивается путем
вариации ренормализационного µR и факторизационного µF масштабов, что,
согласно предыдущим исследованиям [31, 34–37], дает доминирующий вклад

23



для подобных процессов. Вклад от вариации партонных распределений PDF
и αs меньше вклада от вариации масштабов. Поскольку оценка этой относи-
тельно небольшой неопределенности еще требует и значительных вычисли-
тельных ресурсов, в данной работе она не проводится. Вариация масштабов
µR и µF проводилась в соответствии со схемой семиточечной вариации отно-
сительно номинального значения µ0:

(µR, µF ) ∈ {(2, 2), (2, 1), (1, 2), (1, 1), (1, 1/2), (1/2, 1), (1/2, 1/2)} · µ0. (6.2)

В качестве систематической неопределенности принималось максимальное от-
клонение числа событий от номинального значения, полученного при µR =
µF = µ0.

6.1.2. ОЦЕНКА ИНТЕГРАЛЬНОГО СЕЧЕНИЯ

Интегральное сечение вычисляется как сумма весов событий в сигналь-
ном регионе:

σ =
∑
i

wi. (6.3)

Важно отметить, что нормировка веса отличается в разных генераторах. В
случае использования POWHEG результат следует разделить на общее число
смоделированных событий, а при использовании Sherpa — на сумму весов
всех событий. Результат расчета интегрального сечения Z(νν̄)γ на уровне
NNLO(QCD)+PS, смоделированного в POWHEG, составляет:

109.2± 0.5 (стат.) ± 6.2 (сист.) фб. (6.4)

Для сравнения, на уровне NLO(QCD)+PS в Sherpa 2.2.2 и Sherpa 2.2.11 по-
лучены значения 117.2 фб и 104.9 фб соответственно. Прямое численное со-
поставление сечений, рассчитанных на разных порядках теории возмущений
(NLO и NNLO), не является строгим, поскольку более высокий порядок вно-
сит поправки. Однако наблюдаемая близость результатов, полученных в рам-
ках разных генераторов и версий, особенно между значением POWHEG на
NNLO и Sherpa 2.2.11 на NLO, служит косвенным указанием на корректность
и стабильность моделирования.

6.1.3. ОЦЕНКА ДИФФЕРЕНЦИАЛЬНЫХ СЕЧЕНИЙ

Дифференциальные сечения Z(νν̄)γ были измерены как функции вось-
ми различных кинематических переменных: поперечный импульс фотона p γ

T ,
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недостающая поперечная энергия E miss
T , количество струй Njets, псевдобыст-

рота фотона ηγ, поперечные импульсы лидирующей и сублидирующей струй
p j1
T , p j2

T , азимутальный угол между лидирующей и сублидирующей струя-
ми |∆ϕ(j1, j2)| и азимутальный угол между Z-бозоном и лидирующей струей
|∆ϕ(Z, j)|. Дифференциальное сечение определяется выражением:

dσi

dxi
=

Ni

∆xi
, (6.5)

где ∆xi — ширина i-го бина, переменной измерения x, Ni — число событий в
i-м бине. Также учтена нормировка, о которой говорилось выше: при исполь-
зовании POWHEG итог делится на общее число смоделированных событий
N , а при использовании Sherpa — на сумму весов всех событий, получен-
ных при генерации. Полученные дифференциальные сечения представлены
на рисунках 6.1 и 6.2. В данной работе применяется биннинг, предложенный
в [32]. Он обеспечивает либо примерно равное наполнение бинов, либо, при
невозможности этого, — достаточную статистику в каждом бине для контроля
погрешностей.
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Рисунок 6.1 — Дифференциальные сечения процесса Z(νν̄)γ по переменным:
поперечная энергия фотона, недостающая поперечная энергия, псевдобыст-
рота фотона, количество струй
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Рисунок 6.2 — Дифференциальные сечения процесса Z(νν̄)γ по переменным:
поперечные импульсы лидирующей и сублидирующей струи, азимутальный
угол между лидирующей и сублидирующей струями и азимутальный угол
между Z-бозоном и лидирующей струей
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6.2. ПОСТАНОВКА ПРЕДЕЛОВ НА
КОНСТАНТЫ СВЯЗИ

6.2.1. СТАТИСТИЧЕСКИЕ МОДЕЛИ

В работе используются две модели: упрощенная и полная. В упрощенной
статистической модели систематическая погрешность принята равной 10%,
что является типичным значением для подобных исследований [5]. В этой мо-
дели используются наборы событий Z(νν̄)γ и W (lν)γ, полученные в Sherpa
2.2.2. Упрощенная модель используется для различных проверок используе-
мого метода.

Полная статистическая модель включает в себя всю информацию о сиг-
нальном и фоновых процессах, о всех статистических и систематических по-
грешностях. Она используется для получения конечных результатов. Подроб-
ное рассмотрение всех 183 систематических погрешностей проведено в анали-
зе [32]. В полной модели используются наборы событий Z(νν̄)γ и W (lν)γ,
полученные в более новой версии Sherpa 2.2.11. Обе модели включают в себя
полную симуляцию детектора АТЛАС в Geant4.

Для построения полной статистической модели применяется фреймворк
TRExFitter [38], основанный на пакете HistFactory [39] от ROOT. Вводятся
три свободных параметра: µZγ — сила сигнала (параметр интереса); µWγ —
нормировочный коэффициент для процессов W (ℓν)γ и tt̄γ; µγj — нормировоч-
ный коэффициент для процесса γ + струи. Функция правдоподобия в данной
модели имеет вид:

L(µ, θ) =
regions∏
r

[
bins∈r∏
i

Pois
(
Ndata
i |µνsi ηs(θ) + νbi η

b(θ)
)]

·
nuis. par.∏

i

L(θi), (6.6)

где Ndata
i — наблюдаемое число событий в бине i, νs,bi — ожидаемое число

событий от сигнала и фона в бине, η(θ) — функции отклика, описывающие
влияние систематических неопределенностей и нормировки на количество со-
бытий в бине через набор подстроечных параметров (nuisance parameters) θ,
L(θi) – функции правдоподобия, отражающие ограничения на θi.

Для анализа аномальных вкладов используется background-only fit мо-
дель, в которой данные сигнальной области исключаются из анализа. Ми-
нимизация функции правдоподобия выполняется исключительно по данным
контрольных областей Wγ и γj, которые определены в работе [32]. Это поз-
воляет оценить нормировочные коэффициенты фона µWγ, µγj и подстроеч-
ные параметры θ. Оптимальные значения параметра интереса µ и подстро-
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ечных параметров θ находятся минимизацией − lnL(µ, θ) и обозначаются µ̂

и θ̂. Неопределенности определяются с помощью тестовой статистики анало-
гичной той, что описана в разделе 3.4.

Основные отборы, использованные в данном исследовании, получены в
работе [32]. Они представлены в таблице 6.2.

Таблица 6.2 — Критерии отбора событий для сигнального процесса Z(νν̄)γ

Nγ = 1

|ph_z_point| < 250 мм

pγT > 150 ГэВ

(Nµ +Ne +Nτ ) = 0

E miss
T > 130 ГэВ

E miss
T significance > 11

(Econe20
T − 0.065 · pγT ) < 0, pcone20T /pγT < 0.05

∆ϕ(−→p miss
T , γ) > 0.6, ∆ϕ(−→p miss

T , j1) > 0.3

В таблице 6.2 Nγ, Nµ, Ne, Nτ — количество фотонов, мюонов и электро-
нов, τ -лептонов соответственно; j1 — лидирующая струя; E miss

T significance1 —
значимость, отделяющая события с верной величиной потерянной поперечной
энергии от событий с неверно определенной величиной в результате неполной
реконструкции адронных струй; ph_z_point — значение координаты z фото-
на при пересечении его трека с осью z по отношению к установленной главной
вершине; Econe20

T , pcone20T — энерговыделение в калориметре и суммарный попе-
речный импульс в трекере внутри конуса раcтвором ∆R = 0.2 соответственно,
здесь трек фотона является осью конуса.

6.2.2. ПОСТАНОВКА ОДНОМЕРНЫХ ПРЕДЕЛОВ

Определение одномерного предела приведено в разделе 3.3. Для получе-
ния результатов были рассмотрены коэффициенты hV3 , hV4 , hV5 , т.к. они ведут
себя аналогичным с коэффициентами hV1 , hV2 , hV6 образом. Распределения по
поперечной энергии фотона приведены на рисунках 6.3 и 6.4. Для вычислений

1Emiss
T significance определяется как S2 =

|
∑

i E⃗
miss
T |2

σ2
L(1−ρ2

LT )
, где σL — продольная компонента разрешения

детектора (σ2
L = σ2

L,hard + σ2
L,soft), ρLT – коэффициент корреляции между продольным и поперечным

направлениями.
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была использована интегральная светимость набора данных второго сеанса
работы эксперимента АТЛАС, равная 140 фб−1 [40].

Результаты с аномальными вкладами получены из распределения с иной
схемой биннинга по сравнению с оценкой дифференциальных сечений. Такое
изменение позволяет достичь максимальной чувствительности к эффектам,
поскольку их вклад наиболее существенно проявляется в высокоэнергетиче-
ской области, а именно в последнем бине распределения по поперечной энер-
гии фотона Eγ

T .
Для определения оптимальной нижней границы последнего бина было

проведено исследование по оптимизации. Оптимизация заключается в том,
что используется всего один бин с событиями, выше установленного порога
на сигнальную область по чувствительной переменной E γ

T .
С целью минимизации вычислений в исследовании были рассмотрены

только два коэффициента связи. Эти расчеты проводились с использованием
упрощенной статистической модели. Из результатов исследования, представ-
ленных в таблице 6.3, видно, что оптимальный порог находится в диапазоне
1.15 < Eγ

T < 1.35 ТэВ.
Из распределений полученные с доверительной вероятностью 95% од-

номерные пределы. Они приведены в таблице 6.4. Ожидаемые пределы, по-
лученные ранее в рамках упрощенной статистической модели и полученные
в текущей работе в рамках полной статистической модели. Сравнение двух
столбцов позволяет судить о том, как учет полной систематики в окончатель-
ной статистической модели повлиял на конечную чувствительность измере-
ний.
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Рисунок 6.3 — Распределения по поперечной энергии фотона в рамках упро-
щенной модели с указанием всех фонов (вклад каждого фона в сумму обозна-
чен соответствующим цветом), а также аномальных вкладов, обозначенных
сплошными линиями, а) hγ3 , h

γ
4 , h

γ
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Рисунок 6.4 — Распределения по поперечной энергии фотона в рамках пол-
ной модели с указанием всех фонов (вклад каждого фона в сумму обозначен
соответствующим цветом), а также аномальных вкладов (обозначены пунк-
тирными линиями). а) hγ3 , h

γ
4 ; б) hZ3 , hZ4 ; в) hγ5 , hZ5
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Таблица 6.3 — Пределы на hγ3 и hZ4 с использованием одного оптимизирован-
ного бина выше установленного порога (ТэВ) на энергию

Порог [ТэВ] hγ3 hZ4

0.75 (−3.0, 3.1)× 10−4 (−3.4, 3.4)× 10−7

0.95 (−2.5, 2.6)× 10−4 (−2.5, 2.5)× 10−7

1.05 (−2.4, 2.4)× 10−4 (−2.3, 2.2)× 10−7

1.15 (−2.4, 2.4)× 10−4 (−2.1, 2.1)× 10−7

1.25 (−2.4, 2.4)× 10−4 (−2.0, 1.9)× 10−7

1.35 (−2.4, 2.4)× 10−4 (−1.9, 1.9)× 10−7

1.45 (−2.5, 2.5)× 10−4 (−1.8, 1.8)× 10−7

1.55 (−2.7, 2.7)× 10−4 (−1.9, 1.9)× 10−7

Таблица 6.4 — Ожидаемые одномерные пределы с доверительной вероятно-
стью 95% на hγ3 , h

Z
3 , h

γ
4 , h

Z
4 , h

γ
5 , h

Z
5

Коэф. Упрощенная стат. модель Полная стат. модель

hγ3 (−2.2, 2.2)× 10−4 (−2.4, 2.5)× 10−4

hZ3 (−2.0, 2.1)× 10−4 (−2.2, 2.3)× 10−4

hγ4 (−2.0, 2.0)× 10−7 (−2.6, 2.6)× 10−7

hZ4 (−2.0, 2.0)× 10−7 (−2.6, 2.6)× 10−7

hγ5 (−1.0, 1.0)× 10−7 (−1.3, 1.3)× 10−7

hZ5 (−0.9, 1.2)× 10−7 (−1.3, 1.3)× 10−7
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6.2.3. ПОСТАНОВКА ДВУМЕРНЫХ ПРЕДЕЛОВ

Полученные с доверительной вероятностью 95% двумерные пределы
(определение в разд. 3.3), приведены на рисунке 6.5. Пределы на коэффици-
енты (hV3 , hV4 ), (hV3 , hV5 ) ограничены эллипсами. Коэффициенты hV4 и hV5 явля-
ются полностью коррелирующими, поэтому их двумерные пределы выглядит
как две параллельные прямые. Зеленые и желтые полосы погрешностей на
двумерных контурах показывают ожидаемую статистическую флуктуацию в
±1σ и ±2σ соответственно. Они получены путем генерации 10000 псевдоэкс-
периментов в упрощенной модели с установленными одномерными пределами
для каждого из псевдоэкспериментов. Для минимизации вычислений в дан-
ных расчетах использовалась упрощенная статистическая модель. Отноше-
ние дисперсии распределения пределов к медианному значению трактуется
как относительная ожидаемая статистическая флуктуация и переносится на
двумерные контуры. Эта относительная флуктуация составляет около 23%
для каждого коэффициента.
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Рисунок 6.5 — Двумерные пределы на коэффициенты (слева направо и сверху
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γ
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6.2.4. ПРОВЕРКА УНИТАРНОСТИ

Полученные в полной модели пределы проверены на унитарность по
формулам, приведенным в главе 3.5. Для hγ3 и hZ3 пределы начинают нару-
шать границу при 17 ТэВ и 16 ТэВ соответственно. Данные границы превы-
шают энергию центра масс

√
s=13 ТэВ, в рамках которой проводится ана-

лиз. Таким образом, коэффициенты связи hV3 являются унитаризованными в
условиях работы эксперимента АТЛАС. Для коэффициентов hγ4 и hZ4 энергия,
при которой начинает нарушаться унитарность, равна 10 ТэВ и 9 ТэВ соот-
ветственно, для hγ5 и hZ5 — 10 ТэВ и 9 ТэВ. Из распределений по переменной
mZγ для интерференционного и квадратичного слагаемых, представленных
на рисунке 6.6 видно, что вклад аномальных вершин на таких энергиях пре-
небрежимо мал. Применение клиппинга в данном случае не изменит пределы,
поэтому они являются унитаризованными.
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Рисунок 6.6 — Распределение по mZγ для коэффициентов связи: hγ4 , hZ4 , hγ5 ,
hZ5
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7. ЗАКЛЮЧЕНИЕ

В данной работе были рассчитаны теоретические интегральное
и дифференциальные сечения сигнального процесса Z(νν̄)γ на уровне
NNLO(QCD) + PS с использованием генераторов POWHEG и Sherpa различ-
ных версий. В рамках работы была проведена оценка теоретических неопреде-
ленностей, обусловленных вариацией масштабов ренормировки и факториза-
ции. Полученные значения сечений находятся в согласии, что свидетельствует
о корректности моделирования.

Основной целью работы являлось развитие и применение методологии
постановки пределов на параметры аномальных взаимодействий в рамках
формализма вершинной функции для процесса рождения Z-бозона в ассоциа-
ции с фотоном. Была построена полная статистическая модель, максимально
приближенная к условиям эксперимента АТЛАС. В результате проведенного
анализа с использованием данных pp-столкновений с

√
s = 13 ТэВ, соответ-

ствующих интегральной светимости 140 фб−1, получены одномерные преде-
лы на уровне доверия 95% для шести коэффициентов связи hV3 , hV4 и hV5 (где
V = γ, Z).

Также были поставлены двумерные пределы для пар коэффициентов.
Анализ показал, что коэффициенты hV4 и hV5 являются полностью коррели-
рующими, что указывает на возможность исключения одного из них из рас-
смотрения в будущих исследованиях для упрощения параметризации.

Все полученные ограничения были проверены на соответствие условию
унитарности. Все представленные пределы являются унитаризованными в
рамках эксперимента.

В рамках дальнейшего развития методологии планируется решить про-
блему искажения распределений интерференционных слагаемых, вызванную
учетом pile-up, который в текущей работе не учитывался. Кроме того, плани-
руется рассчитать сечение на уровне NLO(EWK), сравнить полученные сече-
ния с данными эксперимента и поставить наблюдаемые пределы.
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[24] T. Sjöstrand, The PYTHIA Event Generator: Past, Present and Future,
Comput. Phys. Commun. 246 (2020) 106910 [1907.09874].

39

https://doi.org/10.1016/j.aop.2013.04.016
https://arxiv.org/abs/1205.4231
https://doi.org/10.1103/PhysRevD.61.073013
https://doi.org/10.1103/PhysRevD.61.073013
https://arxiv.org/abs/hep-ph/9910395
https://doi.org/10.1103/PhysRevD.107.035005
https://arxiv.org/abs/2206.11676
https://arxiv.org/abs/2308.16887
https://doi.org/10.1103/PhysRevD.71.093009
https://arxiv.org/abs/hep-ph/0409131
https://doi.org/10.1016/j.cpc.2009.08.005
https://doi.org/10.1016/j.cpc.2009.08.005
https://arxiv.org/abs/1508.07749
https://doi.org/10.1007/JHEP07(2014)079
https://arxiv.org/abs/1405.0301
https://doi.org/10.1016/j.cpc.2019.106910
https://arxiv.org/abs/1907.09874


[25] T. Gleisberg, S. Hoeche, F. Krauss, M. Schonherr, S. Schumann, F. Siegert
et al., Event generation with SHERPA 1.1, JHEP 02 (2009) 007
[0811.4622].

[26] Sherpa collaboration, Event Generation with Sherpa 2.2, SciPost Phys. 7
(2019) 034 [1905.09127].

[27] S. Frixione, P. Nason and C. Oleari, Matching nlo qcd computations with
parton shower simulations: the powheg method, Journal of High Energy
Physics 2007 (2007) 070.

[28] DELPHES 3 collaboration, DELPHES 3, A modular framework for fast
simulation of a generic collider experiment, JHEP 02 (2014) 057
[1307.6346].

[29] GEANT4 collaboration, GEANT4–a simulation toolkit, Nucl. Instrum.
Meth. A 506 (2003) 250.

[30] H. Mildner, Eftfun framework, 2020.

[31] D. Lombardi, M. Wiesemann and G. Zanderighi, Advancing MıNNLOPS to
diboson processes: Zγ production at NNLO+PS, JHEP 06 (2021) 095
[2010.10478].

[32] E. Soldatov, D. Pyatiizbyantseva, A. Kurova, A. Petukhov, A. Semushin,
D. Zubov et al., Measurement of Z(→ νν̄)γ+jets differential cross sections
and search for neutral triple gauge couplings in pp collisions at 13 TeV with
the ATLAS detector, Tech. Rep. , CERN, Geneva (2024).

[33] G. Bohm and G. Zech, Statistics of weighted Poisson events and its
applications, Nucl. Instrum. Meth. A 748 (2014) 1 [1309.1287].

[34] D. Lombardi, M. Wiesemann and G. Zanderighi, Anomalous couplings in
Zγ events at NNLO+PS and improving νν¯γ backgrounds in dark-matter
searches, Phys. Lett. B 824 (2022) 136846 [2108.11315].

[35] K. Saygin, NNLO QCD predictions of the asymmetry probe of the Zγ
pair-production process, Phys. Scripta 99 (2024) 025302 [2401.06404].

[36] E. Bagnaschi, G. Degrassi and R. Gröber, Higgs boson pair production at
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