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Введение

Цель работы: поиск отклонений от СМ в процессе рождения Z(νν̄)γ.

В рамках поставленной цели нужно выполнить следующие задачи:
1 рассчитать теоретическое интегральное и дифференциальные сечения рождения Z(νν̄)γ в

СМ, оценить их статистические и систематические погрешности;
2 смоделировать этот же процесс с учетом аномальных вкладов, определить чувствительную к

аномальным взаимодействиям переменную процесса;
3 поставить пределы на коэффициенты связи аномальных вершин, используя полную

статистическую модель;
4 проверить, являются ли полученные пределы унитаризованными.
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Теоретические интегральное и дифференциальные сечения

Перед тем, как моделировать аномальные взаимодействия, нужно смоделировать
предсказание Стандартной модели.

Отборы событий [1]:
Фотон: Nγ = 1, Eγ

T > 150 ГэВ, |η| < 2.37

Струи: |η| < 4.5, pT > 50 ГэВ, ∆R(jet, γ) > 0.3

Нейтрино: pµνT > 130 ГэВ

Генератор Порядок сечения pQCD (+PS) Интегральное сечение [фб]

POWHEG [2] NNLO 109.2± 0.5 (cтат.) ± 6.2 (сист.)

Sherpa 2.2.11 [3] NLO 104.9

Sherpa 2.2.2 [3] NLO 117.2

Дифференциальные сечения рассчитаны для 8 кинематических переменных:
pγT , Emiss

T , Njets, ηγ , pj1T , pj2T , |∆ϕ(j1, j2)|, |∆ϕ(Z, j)|
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Теоретические дифференциальные сечения
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Теоретические дифференциальные сечения
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Теоретические дифференциальные сечения
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Теоретическое введение в формализм

Вершинная функция [4, 5, 6]

Γαβµ
ZγV (q1, q2, P ) =

i(P 2 −m2
V )

m2
Z

{
hV
1 (q

µ
2 g

αβ − qα2 g
µβ) +

hV
2

m2
Z

Pα
[
(Pq2)g

µβ − qµ2P
β
]
−

−
(
hV
3 + hV

5

P 2

m2
Z

)
ϵµαβρq2ρ −

hV
4

m2
Z

PαϵµβρσPρq1σ +
hV
6

m2
Z

P 2[qα2 g
µβ − qµ2 g

αβ ]

}
. (1)

Аномальная добавка [4, 5, 6]

L =
e

m2
Z

{
−[hγ

1∂
σAσµ + hZ

1 ∂
σZσµ]ZβA

µβ −
[ hγ

2

m2
Z

∂α∂β∂
ρAρµ +

hZ
2

m2
Z

∂α∂β(∂
2 +m2

Z)Zµ

]
ZαAµβ−

− [hγ
3∂σA

σρ + hZ
3 ∂σZ

σρ]ZαÃρα +
[ hγ

4

2m2
Z

∂2∂σAρα +
hZ
4

2m2
Z

(∂2 +m2
Z)∂

σAρα
]
ZσÃρα−

−
[ hγ

5

m2
Z

∂2∂σA
ρσ +

hZ
5

m2
Z

∂2∂σZ
ρσ
]
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[ hγ
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Z
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6
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Z

∂2∂σZ
ρσ
]
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}
. (2)

На коэффициенты связи — hV
i — можно поставить ограничения.
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Метод декомпозиции и его проверка

В данной работе использовался
метод декомпозиции, который является
новым для исследования вершинных функций.
Метод заключается в том, что наборы генери-
руются отдельно для линейного, квадратичного
слагаемого и слагаемого, отвечающего СМ.

A = ASM + hiAi

|A|2 = |ASM|2 + hi2ReASM
†Ai + h2

i |Ai|2
(3)

Для моделирования отдельных слагаемых ис-
пользуется MadGraph5 [7].
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Модель и отборы

В модели учитываются все фоновые
процессы [8, 9].

Учтены все систематические
погрешности [1].

Модель включает в себя полную
симуляцию детектора АТЛАС в Geant4 [10].

Основные отборы [1]:
pγT > 150 ГэВ,
Nγ = 1, Ne,µ,τ = 0,
E miss

T > 130 ГэВ,
p jet
T > 50 ГэВ
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Постановка одномерных пределов

Сравнение ожидаемых одномерных пределов с доверительной вероятностью 95% на
hγ
3 , h

Z
3 , h

γ
4 , h

Z
4 , h

γ
5 , h

Z
5 в упрощенной и полной статистических моделях.

Коэф. Упрощенная стат. модель Полная стат. модель

hγ
3 (−2.2, 2.2)× 10−4 (−2.4, 2.5)× 10−4

hZ
3 (−2.0, 2.1)× 10−4 (−2.2, 2.3)× 10−4

hγ
4 (−2.0, 2.0)× 10−7 (−2.6, 2.6)× 10−7

hZ
4 (−2.0, 2.0)× 10−7 (−2.6, 2.6)× 10−7

hγ
5 (−1.0, 1.0)× 10−7 (−1.3, 1.3)× 10−7

hZ
5 (−0.9, 1.2)× 10−7 (−1.3, 1.3)× 10−7

Было установлено, что коэффициенты hV
3 , h

V
4 , h

V
5 ведут себя аналогичным образом с

hV
1 , h

V
2 , h

V
6 .

В упрощенной стат. модели систематическая погрешность была принята равной 10%.
Полная стат. модель включает в себя все систематические погрешности.
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Унитаризация

Границы унитарности для двух коэффициентов связи [6]:

|hZ
3 | <

6
√
2πv2mZ

sW cW (T3 −Qs2W )ŝ3/2
, |hγ

3 | <
6
√
2πv2mZ

s2W c2W |Q|ŝ3/2
. (4)

Унитарность нарушается при 16 ТэВ для hZ
3 и при 17 ТэВ для hγ

3 . Полученные значения
превышают энергию в системе центра масс

√
s=13 ТэВ, в рамках которой проводится анализ.

Так как границы унитарности для других интересующих коэффициентов связи не определены в
указанной выше работе, они были посчитаны в рамках текущего анализа:

|hZ
4 | <

12
√
2πv2m3

Z

sW cW (T3 −Qs2W )ŝ5/2
, |hγ

4 | <
12

√
2πv2m3

Z

s2W c2W |Q|ŝ5/2
, (5)

|hZ
5 | <

6
√
2πv2m3

Z

sW cW (T3 −Qs2W )ŝ5/2
, |hγ

5 | <
6
√
2πv2m3

Z

s2W c2W |Q|ŝ5/2
. (6)

Унитарность нарушается при 9 ТэВ для hZ
4 , hZ

5 и при 10 ТэВ для hγ
4 , hγ

5 .
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Двумерные пределы

|A|2 = |ASM|2 + h2
i |Ai|2 + h2

j |Aj |2 + hi2ReASM
†Ai + hj2ReA†

SMAj + hihj2ReA†
iAj (7)
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Вывод

В работе получены теоретические интегральное и дифференциальные сечения для
процесса Z(νν̄)γ, рассчитаны статистические и систематические погрешности для них.
Поставлены ожидаемые одномерные и двумерные пределы на шесть коэффициентов
связи в полной статистической модели. Пределы ухудшились на 8-30% по сравнению с тем,
что было получено в упрощенной модели.
Проверено, что полученные пределы на коэффициенты связи являются унитаризованными
в условиях работы эксперимента АТЛАС.
Также установлено, что новые коэффициенты hV

5 являются полностью коррелирующими с
коэффициентами hV

4 соответственно.

В дальнейшем планируется:
поставить наблюдаемые пределы;
решить проблему искажения распределений интерференционных слагаемых, вызванную
учетом pile-up, который в текущей работе не учитывался;
рассчитать сечение на уровне NLO(EWK).
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Спасибо за внимание!
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Back-Up
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Статистический метод

tµ = −2 ln
L(µ,

ˆ̂
θ(µ))

L(µ̂, θ̂)
(8)
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Одномерные пределы

Коэф. Полная стат. модель Опубликованные пределы [11, 8]

hγ
3 (−2.4, 2.5)× 10−4 (−3.4, 3.5)× 10−4

hZ
3 (−2.2, 2.3)× 10−4 (−2.2, 2.2)× 10−4

hγ
4 (−2.6, 2.6)× 10−7 (−4.4, 4.3)× 10−7

hZ
4 (−2.6, 2.6)× 10−7 (−4.1, 4.2)× 10−7

hγ
5 (−1.3, 1.3)× 10−7 —

hZ
5 (−1.3, 1.3)× 10−7 —
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Распределения по mZγ
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Получение границ унитарности

Амплитуда парциальной волны [2]:

aJ =
1

32π
ei(ν

′
−ν)ϕ

∫ 1

−1

d(cosθ)dJ
ν′ν

(cosθ)T sfsf̄ ,λZλγ . (9)

Из оптической теоремы следуют ограничения на амплитуды парциальных волн [8]:

|aJ | <
1

2
. (10)
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Амплитуды рассеяния

hγ
4 : T sfsf̄ (0±) = −

√
2Qe2

8m5
Z

√
ŝ(ŝ−m2

Z)
2(δ

sf ,
1
2
− δ

sf ,−
1
2
∓ cosθ), (11)

hγ
5 : T sfsf̄ (0±) =

√
2Qe2

4m5
Z

ŝ3/2(ŝ−m2
Z)(δsf , 12

− δ
sf ,−

1
2
∓ cosθ), (12)

hγ
5 : T sfsf̄

( −− −+

+− ++

)
=

Qe2

2m4
Z

ŝ(ŝ−m2
Z)sinθ

(
1 0

0 −1

)
, (13)

hZ
4 : T sfsf̄ (0±) =

√
2(T3 −Qs2W )e2

8cW sWm2
Z

ŝ1/2(ŝ−m2)2(δ
sf ,

1
2
− δ

sf ,−
1
2
∓ cosθ), (14)

hZ
5 : T sfsf̄ (0±) =

√
2(T3 −Qs2W )e2

4cW sWm2
Z

ŝ3/2(ŝ−m2)(δ
sf ,

1
2
− δ

sf ,−
1
2
∓ cosθ), (15)

hZ
5 : T sfsf̄

( −− −+

+− ++

)
=

(T3 −Qs2W )e2

2m4
ZsW cW

ŝ(ŝ−m2
Z)sinθ

(
1 0

0 −1

)
. (16)
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Проверка метода декомпозиции
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Инклюзивный случай
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Эксклюзивный случай
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Двумерные пределы
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Двумерные пределы
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Двумерные пределы
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Исследуемый процесс

В данной работе исследуются нейтральные трехбозонные вершины на основе процесса рождения
Z(νν̄)γ, т. к. данный процесс имеет высокую чувствительность к нейтральным трехбозонным
взаимодействиям.

Диаграммы Фейнмана рождения Z(νν̄)γ:
в рамках СМ
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ū

u

γ

ν̄e

νe

�Z
Z

ū
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Критерии отбора событий для сигнального процесса Z(νν̄)γ [7]

Число жестких фотонов Nγ = 1

Координатная переменная фотона |ph_z_point| < 250 мм

Поперечный импульс фотона pγT > 150 ГэВ

Недостающий поперечный импульс E miss
T > 130 ГэВ

Число лептонов (Nµ +Ne +Nτ ) = 0

Значимость E miss
T , определяемая как |

−→
E miss

T |2/(σ2
L(1− ρ2LT )) E miss

T significance > 11

Калориметрическая изоляция (Econe20
T − 0.065 · pγT ) < 0

Трековая изоляция pcone20T /pγT < 0.05

Разность азимутальных углов между p miss
T и фотоном ∆ϕ(−→p miss

T , γ) > 0.6

Разность азимутальных углов между p miss
T и лидирующей струей ∆ϕ(−→p miss

T , j1) > 0.3

Количество адронных струй в инклюзивном случае Njet ⩾ 0

Количество адронных струй в эксклюзивном случае Njet = 0
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