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1. Введение 

1.1. Цель и задачи работы 

Цель работы: 

Определить интегральную квантовую чувствительность телескопа  

TAIGA-IACT. 

Основные задачи: 

1) Оценить ожидаемое количество регистрируемых мюонных колец 

телескопом в единицу времени; 

2) Разработать алгоритм выделения изображений от одиночных мюонов, 

регистрируемых телескопом TAIGA-IACT; 

3) Разработать математическую модель распределения интенсивности 

черенковского излучения по дуге кольца; 

4) Провести мюонную калибровку на основании отобранных мюонных 

колец для моделируемых и экспериментальных событий. 

Актуальность: 

Наземная гамма-астрономия использует для регистрации гамма-квантов 

косвенный метод - череноквское излучение ШАЛ (широких атмосферных 

ливней). Атмосферные черенковские телескопы (АЧТ) способны измерять 

потоки фотоэлектронов от черенковского излучения, но не фотонов. Таким 

образом, чтобы достоверно измерить энергию первичных частиц, 

необходимо знать точную связь числа черенковских фотонов с числом 

зарегистрированных фотоэлектронов. Одиночные мюоны, регистрируемые 

АЧТ, позволяют установить эту связь благодаря возможности надёжного 

теоретического расчёта числа испущенных фотонов и числа 

зарегистрированных и таким образом оценить искомую пропускную 

способность, то есть интегральную квантовую эффективность телескопа.  
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1.2. Космические лучи 

Космическими лучами называют элементарные частицы, фотоны и ядра 

атомов, движущиеся с высокими энергиями в космическом пространстве. 

Центральным вопросом физики космических лучей является объяснение 

наблюдаемого возле Земли потока космических лучей. 

Физика космических лучей также изучает: 

 механизмы, приводящие к возникновению и ускорению космических 

лучей; 

 частицы космических лучей, их природу и свойства; 

 явления, вызванные частицами космических лучей в космическом 

пространстве, атмосфере Земли и планет, такие как ШАЛ (широкие 

атмосферные ливни). 

Изучение потоков высокоэнергетичных заряженных и нейтральных 

космических частиц, попадающих на границу атмосферы Земли, является 

важнейшей экспериментальной задачей. 

Космические лучи могут возникать: 

 вне нашей Галактики; 

 в нашей Галактике; 

 на Солнце; 

 в межпланетном пространстве. 

Первичными принято называть внегалактические, галактические и 

солнечные космические лучи.  

Вторичными космическими лучами принято называть потоки частиц, 

возникающих под действием первичных космических лучей в атмосфере 

Земли и регистрирующихся на поверхности Земли. 

https://ru.wikipedia.org/wiki/%D0%90%D1%82%D0%BC%D0%BE%D1%81%D1%84%D0%B5%D1%80%D0%B0_%D0%97%D0%B5%D0%BC%D0%BB%D0%B8
https://ru.wikipedia.org/wiki/%D0%9C%D0%BB%D0%B5%D1%87%D0%BD%D1%8B%D0%B9_%D0%9F%D1%83%D1%82%D1%8C
https://ru.wikipedia.org/wiki/%D0%A1%D0%BE%D0%BB%D0%BD%D1%86%D0%B5
https://ru.wikipedia.org/wiki/%D0%9C%D0%B5%D0%B6%D0%BF%D0%BB%D0%B0%D0%BD%D0%B5%D1%82%D0%BD%D0%BE%D0%B5_%D0%BF%D1%80%D0%BE%D1%81%D1%82%D1%80%D0%B0%D0%BD%D1%81%D1%82%D0%B2%D0%BE
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Космические лучи являются составляющей естественной радиации на 

поверхности Земли и в атмосфере. Диапазон энергий частиц в космических 

лучах велик — от 106 эВ до 5⋅1021 эВ. По количеству частиц космические 

лучи на 92 % состоят из протонов, на 6 % — из ядер гелия, около 1 % 

составляют более тяжёлые элементы, и около 1 % приходится на электроны. 

Для их регистрации с одной стороны применяются прямые методы, такие как 

баллонные эксперименты в верхних слоях атмосферы и на орбите Земли. 

Преимуществом таких методов является возможность точного определения 

заряда приходящих частиц, а недостатком – малая площадь регистрации. 

Таким образом, чтобы набрать существенную статистику для 

высокоэнергетических космических лучей требуется значительное время, так 

как интенсивность их потока значительно ниже, чем у низкоэнергетичных. 

Кроме того, заряженные частицы подвержены влиянию магнитных полей в 

космическом пространстве, из-за чего теряется информация о положении их 

источника. 

С другой стороны применяются косвенные методы, связанные с измерением 

параметров широких атмосферных ливней (ШАЛ), вызываемых их ядрами и 

высокоэнергетическими гамма-квантами. Такие измерения можно проводить 

и на поверхности Земли, что за счёт увеличения площади регистрации даёт 

возможность уменьшить время измерения. Кроме того, гамма-кванты не 

подвержены действию магнитного поля и позволяют достаточно точно  

определить положение источника космических лучей.  

1.3. Астрофизический комплекс TAIGA 

Гамма-обсерватория TAIGA (Tunka Advanced Instrument for cosmic rays and 

Gamma Astronomy)1 нацелена на решение актуальных вопросов гамма-

астрономии и физики космических лучей путём измерения параметров 

широких атмосферных ливней, вызванных взаимодействием 

высокоэнергетичных частиц этих лучей с атмосферой. Измеряя различные 

параметры, можно восставновить направление прихода, заряд и энергию 

https://ru.wikipedia.org/wiki/%D0%98%D0%BE%D0%BD%D0%B8%D0%B7%D0%B8%D1%80%D1%83%D1%8E%D1%89%D0%B5%D0%B5_%D0%B8%D0%B7%D0%BB%D1%83%D1%87%D0%B5%D0%BD%D0%B8%D0%B5#%D0%A4%D0%BE%D0%BD_%D0%B8%D0%BE%D0%BD%D0%B8%D0%B7%D0%B8%D1%80%D1%83%D1%8E%D1%89%D0%B5%D0%B3%D0%BE_%D0%B8%D0%B7%D0%BB%D1%83%D1%87%D0%B5%D0%BD%D0%B8%D1%8F
https://ru.wikipedia.org/wiki/%D0%AD%D0%92


7 
 

частиц. Одна из решаемых задач – ответить на вопрос о происхождении 

космических лучей в диапазоне от 1014 до 1018 эВ. Комплекс состоит из 

установок Tunka-133, Tunka-Grande, TAIGA-HiSCORE, TAIGA-MUON, 

TAIGA-IACT. 

1.4. Установка TAIGA-IACT 

Телескоп TAIGA-IACT2 обладает сферическим отражателем диаметром 2,15 

м и фокусным расстоянием 4,75 м. Регистрирующая камера телескопа имеет 

22 кластера ФЭУ, почти каждый из которых содержит 28 фотоумножителей 

(всего порядка 600 фотоумножителей). Каждый пиксель имеет диаметр 3 см 

и обозревает 0,36° небесной сферой. Угловой радиус поля зрения телескопа 

составляет 4,8°. 

 

Рисунок 1. Фотография первых двух телескопов установки TAIGA-IACT 
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2. Черенковское излучение 

2.1. Эффект Вавилова-Черенкова 

Эффект Вавилова-Черенкова заключается в свечении, вызываемом в 

прозрачной среде заряженной частицей, движущейся со скоростью, 

превышающей фазовую скорость распространения света в этой среде. 

Детекторы, регистрирующие черенковское излучение, широко используются 

в физике высоких энергий для регистрации релятивистских частиц и 

определения их скорости и направления движения. Зная скорость и массу 

частицы, можно найти её кинетическую энергию. 

2.2. Оценка предельно допустимой для анализа энергии мюонов 

Чтобы отбирать и анализировать события от одиночных мюонов важно, 

чтобы черенковский угол не зависел от их энергии, что наблюдается при 

высоких энергиях. 

На высоте гамма-обсерватории TAIGA ℎ = 700 м показатель преломления 

атмосферы составляет 𝑛 = 1,0002614. При данном показателе преломления 

максимально возможный черенковский угол составляет 𝜃пред = 1,31°. С 

учётом допустимого отклонения, выбранного равным 𝑝 = 5%, минимальный 

черенковский угол, при котором зависимостью от энергии можно 

пренебречь, составляет 𝜃крит = 1,24°. Под таким углом будут излучать 

мюоны, обладающие энергией 𝐸крит = 14,4 ГэВ. Также можно рассчитать 

пороговую энергию черенковского излучения для мюонов при данном 

показателе преломления – 𝐸порог = 4,6 ГэВ. 
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График 2. Зависимость энергии мюонов от раствора черенковского конуса 

3. Оценка ожидаемого количества  

регистрируемых мюонных колец  

Для выделения событий от одиночных мюонов из фона ШАЛов и прочих 

шумов важно знать, какой поток одиночных мюонов проходит через зеркало 

телескопа в единицу времени.   

На основании справочных данных3 был получен поток одиночных мюонов в 

единицу времени в единицу телесного угла на единичную площадку для 

найденной ранее минимально допустимой энергии: 

Для 𝐸 > 𝐸1 = 12,51 ГэВ ⇒ (
𝑑𝑁

𝑑𝑆𝑑𝛺𝑑𝑡
)
1

= 5,487
мюон

м2 ∗ ср ∗ с
 

Для 𝐸 > 𝐸2 = 16,68 ГэВ ⇒ (
𝑑𝑁

𝑑𝑆𝑑𝛺𝑑𝑡
)
2

= 3,551
мюон

м2 ∗ ср ∗ с
 

Так как для нашей энергии нет явного значения потока, то произведём 

линейную интерполяцию: 
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Для 𝐸 > 𝐸крит = 14,4 ГэВ ⇒ (
𝑑𝑁

𝑑𝑆𝑑𝛺𝑑𝑡
)
крит

= 4,610
мюон

м2 ∗ ср ∗ с
 

Тогда ожидаемое количество мюонных колец можно найти, проинтегрировав 

полученное значение по площади зеркала и телесному углу: 

𝑑𝑁

𝑑𝑡
= (

𝑑𝑁

𝑑𝑆𝑑𝛺𝑑𝑡
)
крит

(1 − cos 𝜃пред)2𝜋
2𝑅2 = 0,110

мюон

с
= 6,60

мюон

мин
= 396

мюон

час
 

4. Оценка углового размера пикселя в фокальной плоскости 

Для расчёта потока черенковских фотонов, попадающих в конкретный 

пиксель, необходимо знать его угловую величину. Для этого рассмотрим 

оптическую схему сферического зеркала. 

 

Рисунок. 3. Радиус черенковского кольца в фокальной плоскости телескопа 

Фокусное расстояние телескопа: 

𝐹 = 4,75 м = 475 см 

Радиус черенковского кольца в фокальной плоскости телескопа: 

tg 𝜃пред =
𝑅пред

𝐹
⇔ 𝑅пред = 𝐹 tg 𝜃пред = 475 см ∗ tg 1,31° = 10,86 см 

Фокальная плоскость 
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Рисунок 4. Линейный и угловой размеры пикселя в фокальной плоскости 

Линейный размер пикселя: 

𝑑 = 3 см 

Угловой радиус поля зрения телескопа: 

𝑖пред = 4,8° 

Так как угол 𝑖пред относительно мал, то в первом приближении будем 

считать, что все мюоны падают перпендикулярно поверхности зеркала, а 

значит все пиксели будут находиться на расстоянии 𝑅пред от центра 

фокальной плоскости. Тогда угловой размер пикселя: 

𝜔

360°
=

𝑑

2𝜋𝑅пред
⇔ 𝜔 = 360°

𝑑

2𝜋𝑅пред
= 360°

3 см

2 ∗ 3,14 ∗ 10,86 см
= 15,83° 

5. Выделение событий от одиночных мюонов 

5.1. Критерии отбора событий 

Проекцией черенковского конуса на плоскость зеркала при малом угле 

падения мюона 𝑖 будет круг, который после прохождения сферического 

зеркала преобразуется в кольцо в фокальной плоскости телескопа. При этом 

азимутальные углы падения относительно центра кольца после прохождения 

зеркала остаются неизменными. Исходя из этого, следует, что число 

черенковских фотонов, попавших в конкретный пиксель кольца в фокальной 
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плоскости, будет пропорционально площади соответствующего сегмента 

зеркала, которую покрыл конус черенковского излучения. 

Как было показано ранее, радиус черенковского кольца, начиная с энергии 

𝐸крит = 14,4 ГэВ мы будем считать постоянным и равным 𝑅пред = 10,86 см. 

Однако на практике, детектируется и множество других событий, вызванных 

ШАЛ и шумовыми событиями, которые в отличии от черенковских колец 

мюонов не обладают радиусом, однако алгоритм тем не менее присваивает 

им его. Для отбора корректных событий используется два критерия: 

– Критерий величины радиуса – допускается отклонение от 

теоретического значения в 𝑅0 = 2 см; 

– Критерий длины дуги – она должна быть больше 180°. 

5.2. Критерий величины радиуса черенковского кольца 

Для определения радиуса колец используется два метода: 

– Грубый метод – путём усреднения координат пикселей находится 

центр кольца и затем путём усреднения расстояний от пикселей до 

этого центра находится радиус кольца 𝑅 и относительное отклонение 

пикселей 𝛿𝑅; 

– Преобразование Хафа4 – фазовое пространство координат пикселей 

разбивается на прямоугольные области, в каждой из которых считается 

радиус черенковского кольца 𝑅𝐻. Прямоугольник, обладающий 

наименьшим относительным отклонением 𝛿𝐻  – считается центром 

кольца. Данный метод требует значительно больших вычислительных 

возможностей по сравнению с грубым, однако является гораздо более 

эффективным. 
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Рисунок 5. Примеры использования критерия величины  

радиуса черенковского кольца 

5.3. Критерий длины дуги кольца 

Из геометрических соображений (см. приложение) длина дуги черенковского 

кольца должна быть больше 180°. В рамках реализованного в работе 

алгоритма  вычисляются попарные расстояния между соседними пикселями, 

и наибольшее из них считается разрывов, а, соответственно, оставшаяся 

часть – дугой черенковского кольца.  

 

 

Событие №6037: 

𝑅 = 14,0 см (𝛿𝑅 = 37%) 

𝑅𝐻 = 10,4 см > 10,86 см − 2 см (𝛿𝐻 = 8%) 

критерий выполнен 

Событие №4491: 

𝑹 = 4,6 см (𝜹𝑹 = 61%) 

𝑅𝐻 = 4,8 см < 10,86 см − 2 см  (𝛿𝐻 = 41%)  

критерии  НЕ выполнен 

 

 

критерий НЕ выполнен 
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Рисунок 6. Примеры использования критерия  

длины дуги черенковского кольца 

5.4. Распределение радиусов черенковских колец 

Применяя рассмотренные выше критерии отбора черенковских колец к 

имеющей статистике, были получены соответствующие распределения их 

радиусов и на их основании были построены соответствующие гистограммы, 

анализ которых будет приведён в данной главе. 

Таблица №1. Число отобранных событий для распределения по радиусу 

Число событий Без отбора по дуге С отбором по дуге 

Моделирование 100 000 5 199 

Эксперимент 100 000 10 239 

 

 

Событие №7667: 

𝝎𝒄𝑠𝑡𝑎𝑟𝑡
= 61° 

𝜔𝑐𝑓𝑖𝑛𝑖𝑠ℎ = −75° 

∆𝜔𝑎𝑟𝑐 = 224° > 180° 

критерий выполнен 

Событие №988: 

𝝎𝒄𝑠𝑡𝑎𝑟𝑡
= −120° 

𝜔𝑐𝑓𝑖𝑛𝑖𝑠ℎ = 16° 

∆𝜔𝑎𝑟𝑐 = 136° < 180°  

критерий НЕ выполнен 
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График 7. Распределение по радиусам на основе данных моделирования 

 

График 8. Распределение по радиусам на основе экспериментальных данных  

Как видно на графиках 7-8, применение критерия длины дуги черенковского 

кольца позволяет выделить отдельный пик с центром в районе 

теоретического значения, что даёт основание отбросить события левее этого 

пика, как некорректные. 
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5.5. Распределение интенсивности в черенковском кольце 

Распределение интенсивности пикселей в черенковском кольце позволяет 

узнать приценльый параметр события и квантовую эффективность телескопа 

– долю фотонов, попадающих на зеркала, которую удаётся зарегистрировать 

в фокальной плоскости с помощью ФЭУ. Число черенковских фотонов, 

попавших в конкретный пиксель кольца в фокальной плоскости, будет 

пропорционально площади соответствующего сегмента зеркала, на которую 

попал конус. Теперь мы можем получить это значение в явном виде. 

 

Рисунок 9. Определение общего число черенковских фотонов,  

падающих на зеркало телескопа 

Количество фотонов в черенковском конусе, испущенных на длине 𝐿, можно 

определить по формуле Тамма-Франка5: 

𝑁 = 2𝜋𝛼𝐿 sin2 𝜃пред ∫
𝜂(𝜆)

𝜆2
𝑑𝜆

𝜆𝑚𝑎𝑥

𝜆𝑚𝑖𝑛

 

(фотоны в черенковском конусе распределены равномерно  

по телесному углу) 
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Выберем высоту мюона над внешней окружностью зеркала таким образом, 

что все испущенные им черенковские фотоны полностью покрыли собой 

зеркало. Рассмотрим прямоугольный треугольник с красной гипотенузой:  

sin 𝜃пред =
𝑅

𝐿1
⇔ 𝐿1 =

𝑅

sin 𝜃пред
=

2,15 м

sin 1,31°
= 94,04 м 

Таким образом, мы получили высоту падения мюона над внешней 

окружностью сферического зеркала. 

Теперь рассмотрим прямоугольник с синей гипотенузой. Запишем для него 

теорему Пифагора: 

(2𝐹 − 𝐿2)
2 + 𝑅2 = (2𝐹)2 

Из неё легко найти искомую часть высоты, проходимую мюоном: 

𝐿2 = 2𝐹 − √4𝐹2 − 𝑅2 = 2 ∗ 4,75 м − √4 ∗ 4,752м2 − 2,152м2 = 0,25 м  

Таким образом, мы получили высоту падения мюона под внешней 

окружностью сферического зеркала. Она хоть и будет сильно меньше 

соответствующей высоты над внешней окружностью ввиду того, что 

телесный угол всей поверхности зеркала остаётся небольшим относительно 

его оптического центра, однако тем не менее всё уже будет учтена в модели, 

что потенциально может быть использовано в аналогичных расчётах для 

других телескопов, обладающих иным соотношением геометрических 

характеристик. 

Тогда полная длина траектории мюона, фотоны с которой попадут на 

зеркало: 

𝐿 = 𝐿1 + 𝐿2 = 94,04 м + 0,25 м = 94,29 м 

Доля площади поверхности зеркала, фотоны с которой попадут в заданный  

пиксель кольца в случае ненулевого прицельного параметра, может меняться 

следующим образом: 
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0 < ∆𝜎 < 1 

С учётом этого мы получим количество черенковских фотонов, попадающих 

в заданный пиксель кольца в случае ненулевого прицельного параметра: 

𝑁𝜎 = ∆𝜎𝑁 = 2𝜋𝛼∆𝜎𝐿 sin2 𝜃пред ∫
𝜂(𝜆)

𝜆2
𝑑𝜆

𝜆𝑚𝑎𝑥

𝜆𝑚𝑖𝑛

 

Численный расчёт интеграла квантовой чувствительности фотоумножителей 

был произведён на основе модели6: 

∫
𝜂(𝜆)

𝜆2
𝑑𝜆

𝜆𝑚𝑎𝑥

𝜆𝑚𝑖𝑛

= ∫
𝜂(𝜆)

𝜆2
𝑑𝜆

640 нм

200 нм

= 463055 м−1 

 

График 10. Эмпирическая зависимость квантовой чувствительности 

фотоумножителей от их длины волны 

Интегральная эффективность регистрации фотонов связана с меняющимися 

во времени параметрами собирания и пропускания света всей оптической 

установкой, которые нельзя с достаточной степенью точности предсказать 

теоретически. Основная цель всей мюонной калибровки как раз и состоит в 
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том, чтобы получить алгоритм её определения в любой момент времени. При 

этом она может меняться следующим образом: 

0 < 𝜓 < 1 

Таким образом, количество черенковских фотонов, детектирующихся в 

заданном пикселе кольца: 

𝐼 = 𝜓𝑁𝜎 = 2𝜋𝛼∆𝜎𝜓𝐿 sin2 𝜃пред ∫
𝜂(𝜆)

𝜆2
𝑑𝜆

𝜆𝑚𝑎𝑥

𝜆𝑚𝑖𝑛

= 1046∆𝜎𝜓 = 𝐼0∆𝜎𝜓 

В случаи нулевого прицельного параметра распределение длин хорд 

гармонично по азимутальному углу: 

𝜌 = 0 ⇒ ∆𝜎 =
∆𝜔пред

2𝜋
⇒ 𝐼 = 𝛼∆𝜔пред𝜓𝐿 sin

2 𝜃пред ∫
𝜂(𝜆)

𝜆2
𝑑𝜆

𝜆𝑚𝑎𝑥

𝜆𝑚𝑖𝑛

= 46𝜓 = 𝐼пред𝜓 

Таким образом, в случаи нулевого прицельного от одного мюона на один 

пиксель в среднем будет приходиться 46 фотонов. 

5.6. Расчёт граничных азимутальных углов пикселя 

Так как угловое распределение пикселей черенковского кольца в фокальной 

плоскости равномерно, то и угловое распределение соответствующих им 

сегментов зеркала тоже будет равномерным по азимутальному углу. Это даёт 

нам возможность рассчитать граничные азимутальные углы пикселя, в 

который попал фотон. 
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Рисунок 11. Связь азимутальных углов пикселя в фокальной плоскости 

Как было показано ранее, координаты центра кольца в камере можно 

получить из преобразования Хафа: 

(𝑥𝑐 , 𝑦𝑐) 

Тогда азимутальный угол центра кольца в камере телескопа (𝑥, 𝑦): 

𝜃𝑐 = arg(𝑥𝑐 , 𝑦𝑐) 

Азимутальный угол пикселя в «смещённой» камере телескопа (𝑥′, 𝑦′): 

𝜔𝑐 = arg(𝑥0 − 𝑥𝑐 , 𝑦0 − 𝑦𝑐) 

Тогда азимутальный угол этого пикселя в мюонной системе  

координат (𝑥′′, 𝑦′′): 

𝜔𝜌 = 𝜔𝑐 − 𝜃𝑐 

При дальнейших расчётах будет использоваться прицельный параметр 

мюона 𝜌 
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Рисунок 12. Расчёт граничных азимутальных углов пикселя 

Рассчитаем граничные азимутальные углы этого пикселя в мюонной системе 

координат, используя геометрическую конфигурацию установки (см. 

приложение). 

𝜑± = arg (
𝜌

𝑅
+ cos (𝜔𝜌 ±

∆𝜔пред

2
) , sin (𝜔𝜌 ±

∆𝜔пред

2
)) 

Тогда угловой размер пикселя в мюонной системе координат будет 

разностью двух граничных азимутальных углов: 

∆𝜑 = 𝜑+ − 𝜑− 

При этом также можно вычислить средний азимутальный угол пикселя в 

мюонной системе координат: 

𝜑 =
𝜑+ + 𝜑−

2
 

Рассмотрим основные свойства граничных азимутальных углов: 

 В случае нулевого прицельного параметра распределение 

азимутальных углов пикселей в мюонной системе координат будет 

равномерно: 

𝜌 = 0 ⇒ 𝜑± = 𝜔𝜌 ±
∆𝜔пред

2
⇒ ∆𝜑 = ∆𝜔пред ∩ 𝜑 = 𝜔𝜌 
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 В случае граничного прицельного параметра распределение 

азимутальных углов пикселей в мюонной системе координат также 

будет равномерно:               . 

𝜌 = 𝑅 ⇒ 𝜑± =
1

2
(𝜔𝜌 ±

∆𝜔пред

2
) ⇒ ∆𝜑 =

∆𝜔пред

2
∩ 𝜑 =

𝜔𝜌

2
 

 В случае бесконечного прицельного параметра азимутальные углы 

пикселя в мюонной системе координат становятся бесконечно малыми: 

𝜌 → ∞ ⇒ 𝜑± → 0 ⇒ ∆𝜑 → 0 ∩ 𝜑 → 0 

Рассмотрим поведение зависимости азимутального угла пикселя в мюонной 

системе координат от его азимутального угла в центральной системе 

координат при различных значениях прицельного параметра: 

 

График 13. Зависимость азимутального угла пикселя в мюонной системе 

координат от его азимутального угла в центральной системе координат 

На графике можно наблюдать постепенное отклонение зависимости 

азимутальных углов от равномерной при нулевом прицельном параметре до 

нулевой по мере удаления мюона на бесконечность от центра зеркала. При 

граничном значении прицельного параметра происходит качественная 

трансформация графика, в результате которой у функции возникает 

максимум, соответствующий касательному попаданию траектории мюона на 

зеркало. 
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График 14. Зависимость углового размера пикселя в мюонной системе 

координат от его азимутального угла в центральной системе координат 

На графике можно наблюдать постепенное отклонение зависимости размера 

пикселя от азимутального угла от константы при нулевом прицельном 

параметре до нулевой по мере удаления мюона на бесконечность от центра 

зеркала. Вблизи граничного прицельного параметра наблюдается резкий 

скачок функции в точке обратного направления, вызванный тем, что граница 

зеркала находится вблизи точки падения мюона. 

5.7. Расчёт длины хорды в плоскости отражателя 

Как было сказано выше, число черенковских фотонов, попавших в 

конкретный пиксель кольца в фокальной плоскости, будет пропорционально 

площади соответствующего сегмента зеркала, на которую попал конус. Эта 

площадь напрямую зависит от проекции длины траектории мюона на 

поверхность зеркала, которая образует на его окружности хорду. Далее будет 

найдена зависимость длины этой хорды от азимутального угла в мюонной 

системе координат. 
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Рисунок 15. Построение хорды в плоскости отражателя, вдоль которой 

собирается черенковское излучение для заданного азимутального угла 

Прицельным параметром называется расстояние, на которое отклоняется 

мюон от центра зеркала при прохождении через него. Соответственно и 

центр сечения черенковского конуса будет смещен относительно центра 

зеркала на это же расстояние. В данном эксперименте интерес представляют 

два случая, когда прицельный параметр больше радиуса зеркала и когда он 

меньше него: 

{
𝜌 < 𝑅, центр сечения конуса лежит внутри зеркала (внутренний случай)

𝜌 > 𝑅, центр сечения конуса лежит вне зеркала (внешний случай)
 

В первом случаи проекция траектории мюона всегда будет пересекать 

окружность зеркала только один раз, в то время как во втором случаи 

помимо этого возможно, как две точки пересечения, так и полное их 

отсутствие.  

Одна же точка пересечения будет наблюдаться в предельном случаи, когда 

траектория мюона проходит по касательной к окружности зеркала. Этот 

случай рассмотрим отдельно: 
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Рисунок 16. Предельный случай прохождения мюона  

относительно зеркала телескопа 

В предельном случаи азимутальный угол пикселя в центральной и мюонной 

системах координат связан простым соотношением: 

𝜑пред + (180° − 𝜔пред) = 90° ⇔ 𝜑пред = 𝜔пред − 90° 

Используя уравнение окружности сечения черенковского конуса в плоскости 

отражателя в центральной системе координат, ориентированной на место 

падения мюона (𝜌, 0), можно получить зависимость относительной длины 

вышеописанной хорды от азимутального угла в мюонной системе координат: 

𝐷(𝜑) =

{
 
 

 
 𝜌

𝑅𝑚𝑖𝑟
cos𝜑 + √1 −

𝜌2

𝑅𝑚𝑖𝑟
2 sin2 𝜑 , 𝜌 < 𝑅𝑚𝑖𝑟  

2√1 −
𝜌2

𝑅𝑚𝑖𝑟
2 sin2 𝜑 , 𝜌 > 𝑅𝑚𝑖𝑟  

 

Для удобства анализа этой функции, все её значения нормированы на радиус 

зеркала телескопа. Таким образом, она может принимать значения  

от 0% до 100%. 

Рассмотрим основные свойства хордовой функции: 
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 Чётность относительно азимутального угла в мюонной системе 

координат: 

𝐷(−𝜑) = 𝐷(𝜑) 

 В случаи нулевого прицельного параметра распределение длин хорд 

равномерно по азимутальному углу:      . 

𝜌 = 0 ⇒ 𝐷(𝜑) = 1 

 В случаи граничного прицельного параметра распределение длин хорд 

по азимутальному углу будет гармоническим:     . 

𝜌 = 𝑅 ⇒ 𝐷(𝜑) = 2 cos𝜑 = 2 cos
𝜔𝜌

2
 

 В случаи бесконечного прицельного параметра длины хорд остаются 

конечными даже при бесконечно малых азимутальных углах, а  

распределение длин хорд по азимутальному углу при этом  также 

оказывается гармоническим:             . 

𝜌 → ∞ ⇒ 𝐷(𝜑) = 2|cos𝜔𝜌| 

Рассмотрим поведение зависимости длины хорды от азимутального угла в 

центральной системе координат при различных значениях прицельного 

параметра: 

 

График 17. Зависимость длины хорды  

от азимутального угла в центральной системе координат 
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На графике можно наблюдать постепенное отклонение зависимости 

длины хорды от азимутального угла от равномерной при нулевом 

прицельном параметре до гармонической по мере удаления мюона на 

бесконечность от центра зеркала. Вблизи граничного значения 

прицельного параметра наблюдается качественное изменение функции, в 

результате чего при больших значения у неё наблюдается 

дополнительный пик вблизи точки обратного направления. 

5.8. Расчёт площади сегмента зеркала, собирающего свет в один пиксель 

Наконец, теперь, зная граничные азимутальные углы пикселя и зависимость 

длины хорды от азимутального угла, можно найти площадь зеркального 

сегмента, собирающего свет в заданный пиксель. 

 

Рисунок 18. Расчёт площади сегмента пикселя,  

собирающего свет в заданный пиксель 

Площадь сегмента зеркала, собирающего свет в диапазоне азимутальных 

углов от 0 до 𝜑, можно получить, проинтегрировав хордовую функцию в 

указанных пределах по азимутальному углу: 

𝜎(𝜑) =

{
  
 

  
 1

2𝜋
(𝜑 +

𝜌2

2𝑅𝑚𝑖𝑟
2 sin 2𝜑 + arcsin (

𝜌

𝑅𝑚𝑖𝑟
sin 𝜑) +

𝜌

𝑅𝑚𝑖𝑟
sin 𝜑√1 −

𝜌2

𝑅𝑚𝑖𝑟
2 sin2 𝜑) , 𝜌 < 𝑅

1

𝜋
(arcsin (

𝜌

𝑅𝑚𝑖𝑟
sin 𝜑) +

𝜌

𝑅𝑚𝑖𝑟
sin 𝜑√1 −

𝜌2

𝑅𝑚𝑖𝑟
2 sin2 𝜑) , 𝜌 > 𝑅
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Для удобства анализа этой функции, все её значения нормированы на 

площадь зеркала телескопа. Таким образом, она может принимать значения  

от 0% до 100%. 

Тогда относительная площадь сегмента зеркала, собирающего свет в пиксель, 

ограниченный азимутальными углами 𝜑− и 𝜑+ будет определяться разностью 

соответствующих значений этой функции: 

∆𝜎 = |𝜎(𝜑+) − 𝜎(𝜑−)| 

Рассмотрим основные свойства сегментной функции: 

 Нечётность относительно азимутального угла в мюонной системе 

координат: 

𝜎(−𝜑) = −𝜎(𝜑) 

 В случаи нулевого прицельного параметра распределение площадей 

сегментов по азимутальному углу будет равномерным: 

𝜌 = 0 ⇒ 𝜎(𝜑) =
𝜑

2𝜋
=
𝜔𝜌

2𝜋
⇒ ∆𝜎 =

∆𝜑

2𝜋
=
∆𝜔пред

2𝜋
 

 В случаи граничного прицельного параметра распределение площадей 

сегментов по азимутальному углу будет гармоническим: 

𝜌 = 𝑅 ⇒ 𝜎(𝜑) =
1

𝜋
(𝜑 +

sin 2𝜑

2
) =

𝜔𝜌 + sin𝜔𝜌

2𝜋
 

𝜌 = 𝑅 ⇒ ∆𝜎 =
∆𝜑 + sin ∆𝜑 cos 2𝜑

𝜋
=

∆𝜔пред
2

+ sin
∆𝜔пред
2

cos𝜔𝜌

𝜋
 

 В случаи бесконечного прицельного параметра площадь сегментов 

остаётся конечной даже при бесконечно малых азимутальных углах, а 

распределение площадей сегментов по азимутальному углу при этом 

также оказывается гармоническим:        . 

𝜌 → ∞ ⇒ 𝜎(𝜑) = {

1

𝜋
(𝜔𝜌 +

sin 2𝜔𝜌

2
) , |𝜔𝜌| <

𝜋

2
1

𝜋
(𝜋 − 𝜔𝜌 −

sin 2𝜔𝜌

2
) ,
𝜋

2
< |𝜔𝜌| < 𝜋
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𝜌 → ∞ ⇒ ∆𝜎 =
∆𝜔пред + sin ∆𝜔пред cos 2𝜔𝜌

𝜋
 

 Интегрирование по всей поверхности зеркала даёт полную площадь его 

круга: 

∆𝜎 = {
𝜎 (arcsin

𝑅𝑚𝑖𝑟
𝜌
) − 𝜎 (−arcsin

𝑅𝑚𝑖𝑟
𝜌
) , 𝜌 < 𝑅𝑚𝑖𝑟

𝜎(𝜋) − 𝜎(−𝜋), 𝜌 > 𝑅𝑚𝑖𝑟

= {
2𝜎 (arcsin

𝑅𝑚𝑖𝑟
𝜌
) , 𝜌 < 𝑅𝑚𝑖𝑟

2𝜎(𝜋), 𝜌 > 𝑅𝑚𝑖𝑟

= 1 

Рассмотрим поведение зависимости длины хорды от азимутального угла в 

центральной системе координат при различных значениях прицельного 

параметра: 

 

График 19. Зависимость сегментной функции  

от азимутального угла в центральной системе координат 

На графике можно наблюдать постепенное отклонение зависимости 

сегментной функции от азимутального угла от равномерной при нулевом 

прицельном параметре до гармонической по мере удаления мюона на 

бесконечность от центра зеркала. При граничном значении прицельного 

параметра происходит качественная трансформация графика, в результате 
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которой у функции возникает максимум, соответствующий касательному 

попаданию траектории мюона на зеркало. 

График 20. Зависимость площади сегмента, собирающей свет в заданный 

пиксель, от азимутального угла в центральной системе координат 

На графике можно наблюдать постепенное отклонение зависимости 

площади сегмента, собирающего свет в заданный пиксель, от 

азимутального угла от равномерной при нулевом прицельном параметре 

до гармонической по мере удаления мюона на бесконечность от центра 

зеркала. Вблизи граничного значения прицельного параметра 

наблюдается качественное изменение функции, в результате чего при 

больших значения у неё наблюдается дополнительный пик вблизи точки 

обратного направления. Кроме того, в самой непосредственной близости 

от граничного прицельного параметра это пик превращается в плато, что 

связано с тем, что угловой размер пикселя в центральной системе 

координат имеет хоть и небольшой, но всё же конечный размер, который 

и виден на графике. 
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5.9. Расчёт прицельного параметра и квантовой  

эффективности отдельного события 

Для определения средней квантовой эффективности телескопа, необходимо 

найти её значения для каждого события. Однако помимо квантовой 

эффективности придётся найти ещё и прицельный параметр, значение 

которого меняется случайным образом. Для этого используем следующий 

алгоритм. 

Рассмотрим событие, содержащее 𝑛 пикселей,  

имеющих амплитуда 𝑚𝑘, где 1 ≤ 𝑘 ≤ 𝑛. Будем искать значение прицельного 

параметра в пределах от 0 см до 𝜌𝑚𝑎𝑥 = 50 см, а значение квантовой 

эффективности в пределах от 0% до 100%. 

Разобьём фазовый прямоугольник, ограниченный пределами изменения 

соответствующих переменных, на 𝑑 частей по каждой оси с интервалами: 

∆𝜌 =
𝜌𝑚𝑎𝑥
𝑑

, ∆𝜓 =
100%

𝑑
 

Найдём значения границ частей разбиения: 

𝜌𝑖 = 𝑖∆𝜌, 𝜓𝑗 = 𝑗∆𝜓, 0 ≤ 𝑖 ≤ 𝑑, 0 ≤ 𝑗 ≤ 𝑑 

Вычислим теоретическое значение интенсивности для каждого пикселя с 

помощью вышеописанной модели: 

𝐼𝑖,𝑗,𝑘 = 𝐼0∆𝜎(𝜌𝑖 , 𝜔𝑘)𝜓𝑗 

Вычислим суммарное квадратичное отклонение интенсивности отдельных 

пикселей от теоретического значения: 

(∆𝐼𝑖,𝑗)
2
=∑(𝑚𝑘 − 𝐼𝑖,𝑗,𝑘)

2
𝑛

𝑘=1
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Узел разбиения (𝜌𝑖, 𝜓𝑗), имеющий наименьшее суммарное квадратичное 

отклонение интенсивности ∆𝐼𝑖,𝑗 будем считать оптимальным. Тогда искомые 

параметры: 

𝜌 = 𝜌𝑖, 𝜓 = 𝜓𝑗, ∆𝐼𝑖,𝑗 = ∆𝐼𝑖,𝑗𝑚𝑖𝑛
 

На основании аппроксимации можно найти среднюю интенсивность 

пикселей кольца: 

𝐼 =
∑ 𝑚𝑘𝐼𝑘
𝑛
𝑘=1

∑ 𝑚𝑘
𝑛
𝑘=1

 

Это значение можно сравнить с усредненным значением интенсивности всех 

пикселей кольца: 

𝑚 =
∑ 𝑚𝑘
𝑛
𝑘=1

𝑛
 

Наконец, можно найти относительное среднеквадратичное отклонение, 

которое позволяет отобрать события с высоким соответствием распределения 

интенсивности в кольце сегментной функции: 

𝛿𝐼 =
∆𝐼

𝐼
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Рисунок 21. Примеры распределения интенсивности в черенковском кольце 

5.10. Распределение квантовой эффективности 

На основании набранной статистики значений квантовой эффективности 

были построены распределения с учётом различных критериев отбора для 

экспериментальных данных и для данных моделирования, представленные 

ниже. 

Таблица №2. Число отобранных событий  

для распределения по квантовой эффективности 

Число событий Без отбора  С отбором 

по дуге 

С отбором 

по радиусу 

С отбором по 

дуге и по 

радиусу 

Моделирование 31 706 1 352 5 519 242 

Эксперимент 33 975 2 346 4 279 17 

 

№87109: 

𝜌 = 184,9 см 

𝜓 = 28% 

𝑚 = 16,4 

𝐼 = 19,5 

𝛿𝐼 = 29% 

№46206: 

𝜌 = 30,1 см 

𝜓 = 40% 

𝑚 = 14,9 

𝐼 = 19,6 

𝛿𝐼 = 62% 
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График 22. Распределение квантовой эффективности  

на основе данных моделирования 

 

График 23. Распределение квантовой эффективности на основе 

экспериментальных данных 
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На основании аппроксимации распределения по данным моделирования 

были получены следующие значения квантовой эффективности: 

– без отбора: 𝜓 = 49 ± 18%; 

– c отбором по дуге: 𝜓 = 40 ± 13%; 

– с отбором по радиусу: 𝜓 = 45 ± 16%; 

– с отбором по дуге и по радиусу: 𝜓 = 39 ± 12%. 

На основании аппроксимации распределения по данным моделирования 

были получены следующие значения квантовой эффективности: 

– без отбора: 𝜓 = 45 ± 19%; 

– c отбором по дуге: 𝜓 = 42 ± 19%; 

– с отбором по радиусу: 𝜓 = 42 ± 18%; 

– с отбором по дуге и по радиусу: 𝜓 = 51 ± 23%. 
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Заключение 

В рамках данной работы: 

– было оценено ожидаемое количество регистрируемых мюонных 

колец телескопом в единицу времени; 

– был разработан алгоритм выделения изображений от одиночных 

мюонов, регистрируемых телескопом TAIGA-IACT; 

– была разработана математическая модель распределения 

интенсивности черенковского излучения по дуге кольца; 

– была проведена первая оценка интегральной квантовой 

чувствительности третьего телескопа установки TAIGA-IACT по 

данным эксперимента и моделирования. 

На основании аппроксимации распределения по данным моделирования 

были получены следующие значения квантовой эффективности: 

– без отбора: 𝜓 = 49 ± 18%; 

– c отбором по дуге: 𝜓 = 40 ± 13%; 

– с отбором по радиусу: 𝜓 = 45 ± 16%; 

– с отбором по дуге и по радиусу: 𝜓 = 39 ± 12%. 

На основании аппроксимации распределения по данным моделирования 

были получены следующие значения квантовой эффективности: 

– без отбора: 𝜓 = 45 ± 19%; 

– c отбором по дуге: 𝜓 = 42 ± 19%; 

– с отбором по радиусу: 𝜓 = 42 ± 18%; 

– с отбором по дуге и по радиусу: 𝜓 = 51 ± 23%. 
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ПРИЛОЖЕНИЕ  

Некоторые использованные свойства математических функций 

Азимутальный угол точки (𝑥, 𝑦) относительно точки (𝑥𝑐 , 𝑦𝑐): 

𝜑 = arg(𝑥 − 𝑥𝑐 , 𝑦 − 𝑦𝑐) = {

𝜑0 , 𝑥𝑘 > 𝑥𝑐
𝜑0 + 180°, 𝑥𝑘 < 𝑥𝑐 , 𝑦𝑘 > 𝑦𝑐
𝜑0 − 180°, 𝑥𝑘 < 𝑥𝑐 , 𝑦𝑘 < 𝑦𝑐

  , 𝜑0 = arctg
𝑦𝑘 − 𝑦𝑐
𝑥𝑘 − 𝑥𝑐

 

Свойства тригонометрических функций: 

sin(𝛼) ± sin(𝛽) = 2 sin
𝛼 ± 𝛽

2
cos

𝛼 ∓ 𝛽

2
 

sin(𝜑 ± 180°) = − sin𝜑 

sin(−𝜑) = − sin𝜑 

Свойства обратных тригонометрических функций: 

arcsin sin𝜑 = 𝜑,−90° < 𝜑 < 90° 

arcsin(−𝜑) = −arcsin 𝜑 

Свойства арифметического корня: 

√𝑥2 = |𝑥| = {
𝑥, 𝑥 > 0
−𝑥, 𝑥 < 0

 

Пределы: 

𝑥 → 0 ⇒ sin 𝑥 ~ arcsin 𝑥 ~ tg 𝑥 ~ arctg 𝑥 ~𝑥 

Интегралы: 

∫√1 − 𝑥2𝑑𝑥 =
arcsin 𝑥 + 𝑥√1 − 𝑥2

2
+ 𝐶 

Элемент телесного угла: 

𝑑𝛺 = sin 𝜃 𝑑𝜃𝑑𝜑 
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Алгоритмы аппроксимации 

Грубая формула Преобразование Хафа Квантовая эффективность 

Область изменения переменных 

𝑥𝑚𝑖𝑛 < 𝑥 < 𝑥𝑚𝑎𝑥  

𝑦𝑚𝑖𝑛 < 𝑦 < 𝑦𝑚𝑎𝑥 

𝑥𝑚𝑖𝑛 < 𝑥 < 𝑥𝑚𝑎𝑥  

𝑦𝑚𝑖𝑛 < 𝑦 < 𝑦𝑚𝑎𝑥 

0 < 𝜌 < 𝑅𝑚𝑖𝑟𝑟𝑜𝑟  

0 < 𝜓 < 1 

Диаметр разбиения 

-  

∆𝑥 =
𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛

𝑑
 

∆𝑦 =
𝑦𝑚𝑎𝑥 − 𝑦𝑚𝑖𝑛

𝑑
 

 

∆𝜌 =
𝑅𝑚𝑖𝑟𝑟𝑜𝑟
𝑑

 

∆𝜓 =
1

𝑑
 

Границы частей разбиения 

- 𝑥𝑖 = 𝑥𝑚𝑖𝑛 + 𝑖∆𝑥, 0 ≤ 𝑖 ≤ 𝑑 

𝑦𝑖 = 𝑦𝑚𝑖𝑛 + 𝑗∆𝑦, 0 ≤ 𝑗 ≤ 𝑑 

𝜌𝑖 = 𝑖∆𝜌, 0 ≤ 𝑖 ≤ 𝑑 

𝜓𝑗 = 𝑗∆𝜓, 0 ≤ 𝑗 ≤ 𝑑 

Массив среднеквадратичных отклонений 

- 

 

 

 

(𝑅𝑖,𝑗,𝑘)
2
= (𝑥𝑘 − 𝑥𝑖)

2 + (𝑦𝑘 − 𝑦𝑗)
2
 

𝑅𝑖,𝑗 =
∑ 𝑚𝑘𝑅𝑖,𝑗,𝑘
𝑛
𝑘=1

∑ 𝑚𝑘
𝑛
𝑘=1

 

(∆𝑅𝑖,𝑗)
2
=
∑ 𝑚𝑘(𝑅𝑖,𝑗,𝑘 − 𝑅𝑖,𝑗)

2𝑛
𝑘=1

∑ 𝑚𝑘
𝑛
𝑘=1

 

 

𝐼𝑖,𝑗,𝑘 = 𝐼0∆𝜎(𝜔𝑘 , 𝜌𝑖)𝜓𝑗 

(∆𝐼𝑖,𝑗)
2
=
∑ 𝑚𝑘(𝐼𝑖,𝑗,𝑘 −𝑚𝑘)

2𝑛
𝑘=1

∑ 𝑚𝑘
𝑛
𝑘=1

 

Минимизация среднеквадратичного отклонения 

𝑥𝑐 =
∑ 𝑚𝑘𝑥𝑘
𝑛
𝑘=1

∑ 𝑚𝑘
𝑛
𝑘=1

 

𝑦𝑐 =
∑ 𝑚𝑘𝑦𝑘
𝑛
𝑘=1

∑ 𝑚𝑘
𝑛
𝑘=1

 

(𝑅𝑘)
2 = (𝑥𝑘 − 𝑥𝑐)

2 + (𝑦𝑘 − 𝑦𝑐)
2 

𝑅 =
∑ 𝑚𝑘𝑅𝑘
𝑛
𝑘=1

∑ 𝑚𝑘
𝑛
𝑘=1

 

(∆𝑅)2 =
∑ 𝑚𝑘(𝑅𝑘 −𝑅)

2𝑛
𝑘=1

∑ 𝑚𝑘
𝑛
𝑘=1

 

𝑖 ∩ 𝑗:∆𝑅𝑖,𝑗 = ∆𝑅𝑖,𝑗𝑚𝑖𝑛
⇒ {

𝑥𝑐 = 𝑥𝑖
𝑦𝑐 = 𝑦𝑗
𝑅𝐻 = 𝑅𝑖,𝑗
∆𝑅𝐻 = ∆𝑅𝑖,𝑗

 𝑖 ∩ 𝑗: {

𝑖 ≠ 0 ∩ 𝑖 ≠ 𝑑
𝑗 ≠ 0 ∩ 𝑗 ≠ 𝑑
∆𝐼𝑖,𝑗 = ∆𝐼𝑖,𝑗𝑚𝑖𝑛

⇒ {

𝜌 = 𝜌𝑖
𝜓 = 𝜓𝑗
𝐼𝑘 = 𝐼𝑖,𝑗,𝑘
∆𝐼 = ∆𝐼𝑖,𝑗

 

𝐼 =
∑ 𝑚𝑘𝐼𝑘
𝑛
𝑘=1

∑ 𝑚𝑘
𝑛
𝑘=1

 

𝑚 =
∑ 𝑚𝑘
𝑛
𝑘=1

𝑛
 

 

Относительное среднеквадратичное отклонение 

𝛿𝑅 =
∆𝑅

𝑅
 𝛿𝐻 =

∆𝑅𝐻
𝑅𝐻

 𝛿𝐼 =
∆𝐼

𝐼
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Оценка предельно допустимой для анализа энергии мюонов 

Чтобы отбирать и анализировать события от одиночных мюонов важно, 

чтобы черенковский угол не зависел от их энергии, что наблюдается при 

высоких энергиях. 

Высота гамма-обсерватории TAIGA над уровнем моря: 

ℎ = 700 м 

Коэффициент преломления воздуха на уровне обсерватории:  

𝑛 = 1 + 2,9 ∗ 10−4 ∗ 𝑒−
ℎ

7100 м = 1 + 2,9 ∗ 10−4 ∗ 𝑒−
700 м
7100 м = 1,000262773 

Раствор черенковского конуса: 

cos 𝜃 =
1

𝛽𝑛
⇔ 𝛽 =

1

𝑛 cos 𝜃
 

Энергия покоя мюона: 

𝐸0 = 105,659 МэВ 

Полная энергия мюона: 

𝐸 = 𝛾𝐸0 =
𝐸0

√1 − 𝛽2
=

𝐸0

√1 −
1

𝑛2 cos2 𝜃

 

Пороговая энергия мюона: 

cos 𝜃 = 1 ⇒ 𝐸порог =
𝐸0

√1 −
1
𝑛2

=
105,659 МэВ

√1 −
1

1,0002627732

= 4610 МэВ = 4,6 ГэВ 

Предельный угол черенковского излучения: 

𝛽 = 1 ⇒ cos 𝜃пред =
1

𝑛
⇔ 𝜃пред = arccos

1

𝑛
= arccos

1

1,000262773
= 1,31° 

Условимся, что предельное допустимое отклонение черенковского угла для 

нас составляет: 
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𝑝 = 5% 

Тогда критический раствор черенковского конуса: 

𝜃крит = 𝜃пред(1 − 𝑝) = 1,31° ∗ (1 − 0,05) = 1,24° 

Тогда минимальная энергия мюонов, при которой зависимостью энергии от 

раствора черенковского конуса можно пренебречь: 

𝐸крит =
𝐸0

√1 −
1

𝑛2 cos2 𝜃крит

=
105,659 МэВ

√1 −
1

1,0002627732 cos2 1,24°

= 14,4 ГэВ 

Далее в работе мы будем рассматривать лишь те мюоны, энергия которых 

больше критического значения: 

𝐸 > 𝐸крит 

Оценка ожидаемого количества  

регистрируемых мюонных колец  

Из справочной литературы4 найдём потоки одиночных мюонов в единицу 

времени на единицу площади и на единицу телесного угла: 

Для 𝐸 > 𝐸1 = 12,51 ГэВ ⇒ (
𝑑𝑁

𝑑𝑆𝑑𝛺𝑑𝑡
)
1

= 5,487
мюон

м2 ∗ ср ∗ с
 

Для 𝐸 > 𝐸2 = 16,68 ГэВ ⇒ (
𝑑𝑁

𝑑𝑆𝑑𝛺𝑑𝑡
)
2

= 3,551
мюон

м2 ∗ ср ∗ с
 

Так как для нашей энергии нет явного значения потока, то произведём 

линейную интерполяцию: 

𝐸крит − 𝐸1

𝐸2 − 𝐸1
=

(
𝑑𝑁

𝑑𝑆𝑑𝛺𝑑𝑡
)
крит

− (
𝑑𝑁

𝑑𝑆𝑑𝛺𝑑𝑡
)
1

(
𝑑𝑁

𝑑𝑆𝑑𝛺𝑑𝑡
)
2
− (

𝑑𝑁
𝑑𝑆𝑑𝛺𝑑𝑡

)
1
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(
𝑑𝑁

𝑑𝑆𝑑𝛺𝑑𝑡
)
крит

= (
𝑑𝑁

𝑑𝑆𝑑𝛺𝑑𝑡
)
1

+ ((
𝑑𝑁

𝑑𝑆𝑑𝛺𝑑𝑡
)
2

− (
𝑑𝑁

𝑑𝑆𝑑𝛺𝑑𝑡
)
1

)
𝐸крит − 𝐸1

𝐸2 − 𝐸1
= 

= 5,487
мюон

м2 ∗ ср ∗ с
+ (3,551

мюон

м2 ∗ ср ∗ с
− 5,487

мюон

м2 ∗ ср ∗ с
)
14,4 ГэВ − 12,51 ГэВ

16,68 ГэВ − 12,51 ГэВ
= 

= 4,610
мюон

м2 ∗ ср ∗ с
 

Тогда ожидаемое количество мюонных колец можно найти, проинтегрировав 

полученное значение по площади зеркала и телесному углу: 

∫(
𝑑𝑁

𝑑𝑆𝑑𝛺𝑑𝑡
)
крит

𝑑𝛺 = ∫4,610
мюон

м2 ∗ ср ∗ с
𝑑𝛺 

(
𝑑𝑁

𝑑𝑆𝑑𝑡
)
крит

= 4,610
мюон

м2 ∗ ср ∗ с
∫𝑑𝛺 

(
𝑑𝑁

𝑑𝑆𝑑𝑡
)
крит

= 4,610
мюон

м2 ∗ ср ∗ с
∫ sin 𝜃 𝑑𝜃
1,31°

0°

∫ 𝑑𝜑
2𝜋

0

 

(
𝑑𝑁

𝑑𝑆𝑑𝑡
)
крит

= −4,610
мюон

м2 ∗ ср ∗ с
cos 𝜃|0°

1,31°𝜑|0
2𝜋 

(
𝑑𝑁

𝑑𝑆𝑑𝑡
)
крит

= −4,610
мюон

м2 ∗ ср ∗ с
(cos 1,31° − cos 0 °)(2𝜋 − 0) 

(
𝑑𝑁

𝑑𝑆𝑑𝑡
)
крит

= 4,610
мюон

м2 ∗ с
2𝜋(1 − cos 1,31°) 

∫ (
𝑑𝑁

𝑑𝑆𝑑𝑡
)
крит

𝑑𝑆 = ∫4,610
мюон

м2 ∗ с
2𝜋(1 − cos 1,31°)𝑑𝑆 

(
𝑑𝑁

𝑑𝑡
)
крит

= 4,610
мюон

м2 ∗ с
2𝜋(1 − cos 1,31°)∫𝑑𝑆 

(
𝑑𝑁

𝑑𝑡
)
крит

= 4,610
мюон

м2 ∗ с
2𝜋(1 − cos 1,31°)𝑆 

(
𝑑𝑁

𝑑𝑡
)
крит

= 4,610
мюон

м2 ∗ с
2𝜋(1 − cos 1,31°)𝜋𝑅2 
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(
𝑑𝑁

𝑑𝑡
)
крит

= 4,610
мюон

м2 ∗ с
(1 − cos 1,31°)2𝜋2𝑅2 

(
𝑑𝑁

𝑑𝑡
)
крит

= 4,610
мюон

м2 ∗ с
(1 − cos 1,31°) ∗ 2 ∗ 3,142 ∗ 2,152 м2 

(
𝑑𝑁

𝑑𝑡
)
крит

= 0,110
мюон

с
= 6,60

мюон

мин
= 396

мюон

час
 

Расчёт граничных азимутальных углов пикселя 

Рассчитаем граничные азимутальные углы пикселя в мюонной системе 

координат, используя два прямоугольных треугольника, имеющих общую 

сторону: 

sin 𝜔𝜌 =
ℎ

𝑅𝑚𝑖𝑟
⇔ ℎ = 𝑅𝑚𝑖𝑟 sin 𝜔𝜌 

cos𝜔𝜌 =
𝑓

𝑅𝑚𝑖𝑟
⇔ 𝑓 = 𝑅𝑚𝑖𝑟 cos𝜔𝜌 

tg 𝜑 =
ℎ

𝜌 + 𝑓
=

𝑅𝑚𝑖𝑟 sin𝜔𝜌

𝜌 + 𝑅𝑚𝑖𝑟 cos𝜔𝜌
=

sin𝜔𝜌
𝜌

𝑅𝑚𝑖𝑟
+ cos𝜔𝜌

⇔ 𝜑 = arg (
𝜌

𝑅𝑚𝑖𝑟
+ cos𝜔𝜌 , sin 𝜔𝜌) 

tg 𝜑± =
sin (𝜔𝜌 ±

∆𝜔пред
2 )

𝜌
𝑅𝑚𝑖𝑟

+ cos (𝜔𝜌 ±
∆𝜔пред
2 )

⇔ 𝜑± = arg (
𝜌

𝑅𝑚𝑖𝑟
+ cos (𝜔𝜌 ±

∆𝜔пред
2

) , sin (𝜔𝜌 ±
∆𝜔пред
2

)) 

Тогда угловой размер пикселя в мюонной системе координат будет 

разностью двух граничных азимутальных углов: 

∆𝜑 = 𝜑+ − 𝜑− 

При этом также можно вычислить средний азимутальный угол пикселя в 

мюонной системе координат: 

𝜑 =
𝜑+ + 𝜑−

2
 

В случаи нулевого прицельного параметра: 
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𝜌 = 0 ⇒ tg𝜑 =
sin 𝜔𝜌

0
𝑅𝑚𝑖𝑟

+ cos𝜔𝜌

= tg𝜔𝜌 ⇔ 𝜑 = 𝜔𝜌 ⇒ 𝜑± = 𝜔𝜌 ±
∆𝜔пред

2
 

∆𝜑 = 𝜑+ − 𝜑− = (𝜔𝜌 +
∆𝜔пред

2
) − (𝜔𝜌 −

∆𝜔пред

2
) = ∆𝜔пред 

𝜑 =
𝜑+ + 𝜑−

2
=
(𝜔𝜌 +

∆𝜔пред
2

) + (𝜔𝜌 −
∆𝜔пред
2

)

2
= 𝜔𝜌 

(распределение азимутальных углов пикселей в мюонной системе координат равномерно) 

В случаи граничного прицельного параметра: 

𝜌 = 𝑅𝑚𝑖𝑟 ⇒ tg𝜑 =
sin 𝜔𝜌

𝑅𝑚𝑖𝑟
𝑅𝑚𝑖𝑟

+ cos𝜔𝜌

=
sin𝜔𝜌

1 + cos𝜔𝜌
=

2sin
𝜔𝜌
2
cos

𝜔𝜌
2

1 + 2 cos2
𝜔𝜌
2
− 1

= tg
𝜔𝜌

2
⇔ 𝜑 =

𝜔𝜌

2
 

𝜑± =
1

2
(𝜔𝜌 ±

∆𝜔пред

2
) 

∆𝜑 = 𝜑+ − 𝜑− =
1

2
(𝜔𝜌 +

∆𝜔пред

2
) −

1

2
(𝜔𝜌 −

∆𝜔пред

2
) =

∆𝜔пред

2
 

𝜑 =
𝜑+ + 𝜑−

2
=

1
2
(𝜔𝜌 +

∆𝜔пред
2

) +
1
2
(𝜔𝜌 −

∆𝜔пред
2

)

2
=
𝜔𝜌

2
 

(распределение азимутальных углов пикселей в мюонной системе координат 

равномерно) 

В случаи бесконечного прицельного параметра: 

𝜌 → ∞ ⇒ tg𝜑 = lim
𝜌→∞

sin𝜔𝜌
𝜌

𝑅𝑚𝑖𝑟
+ cos𝜔𝜌

= lim
𝜌→∞

𝑅𝑚𝑖𝑟 sin𝜔𝜌

𝜌
= 𝑅𝑚𝑖𝑟 sin𝜔𝜌 lim

𝜌→∞

1

𝜌
= 0 

𝜌 → ∞∩ |𝜑| <
𝜋

2
⇒ 𝜑 = lim

𝜌→∞
arg (

𝜌

𝑅𝑚𝑖𝑟
+ cos𝜔𝜌 , sin𝜔𝜌) = lim

𝜌→∞
arctg

sin 𝜔𝜌
𝜌

𝑅𝑚𝑖𝑟
+ cos𝜔𝜌

= 

= lim
𝜌→∞

arctg
𝑅𝑚𝑖𝑟 sin𝜔𝜌

𝜌
= lim

𝜌→∞

𝑅𝑚𝑖𝑟 sin𝜔𝜌

𝜌
= 𝑅𝑚𝑖𝑟 sin𝜔𝜌 lim

𝜌→∞

1

𝜌
= 0 ⇒ 𝜑± → 0 ⇒ ∆𝜑 = 0 ∩ 𝜑 = 0 
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(азимутальные углы пикселя в мюонной системе координат становятся 

бесконечно малыми) 

Расчёт длины хорды в плоскости отражателя 

Уравнение окружности сечения черенковского конуса в плоскости 

отражателя в мюонной системе координат: 

(𝑥 − 𝜌)2 + 𝑦2 = 𝑅𝑚𝑖𝑟
2  

Перейдём к полярным координатам: 

(𝑟 cos𝜑 − 𝜌)2 + (𝑟 sin𝜑)2 = 𝑅𝑚𝑖𝑟
2  

𝑟2 cos2𝜑 − 2𝜌𝑟 cos𝜑 + 𝜌2 + 𝑟2 sin2 𝜑 = 𝑅𝑚𝑖𝑟
2  

𝑟2 − 2𝜌𝑟 cos𝜑 + 𝜌2 − 𝑅𝑚𝑖𝑟
2 = 0 

𝑟±(𝜑) = 𝜌 cos𝜑 ± √𝜌
2 cos2 𝜑 − (𝜌2 − 𝑅𝑚𝑖𝑟

2 ) = 𝜌 cos𝜑 ± √𝜌2 cos2 𝜑 − 𝜌2 + 𝑅𝑚𝑖𝑟
2 = 

= 𝜌 cos 𝜑 ± √𝑅𝑚𝑖𝑟
2 − 𝜌2 sin2 𝜑 = 𝑅𝑚𝑖𝑟 (

𝜌

𝑅𝑚𝑖𝑟
cos 𝜑 ± √1 −

𝜌2

𝑅𝑚𝑖𝑟
2 sin2 𝜑) 

Условие существования хорды вследствие положительности подкоренного выражения: 

𝑅𝑚𝑖𝑟
2 − 𝜌2 sin2 𝜑 > 0 ⇔ 𝑅𝑚𝑖𝑟

2 > 𝜌2 sin2 𝜑 ⇔ 𝑅𝑚𝑖𝑟 > 𝜌|sin𝜑| ⇔ |sin𝜑| <
𝑅𝑚𝑖𝑟
𝜌

⇔ 

⇔ sin|𝜑| <
𝑅𝑚𝑖𝑟
𝜌

⇔

{
 

 sin|𝜑| <
𝑅𝑚𝑖𝑟
𝜌

< 1, 𝜌 > 𝑅𝑚𝑖𝑟

sin|𝜑| < 1 <
𝑅𝑚𝑖𝑟
𝜌

, 𝜌 < 𝑅𝑚𝑖𝑟

⇔ {
|𝜑| < arcsin

𝑅𝑚𝑖𝑟
𝜌

< 90°, 𝜌 > 𝑅𝑚𝑖𝑟

|𝜑| < 180°, 𝜌 < 𝑅𝑚𝑖𝑟

 

Таким образом, при 𝜌 > 𝑅𝑚𝑖𝑟 в мюонной системе координат существует 

предельное значение азимутального угла, больше которого он быть не может: 

𝜑пред = arcsin
𝑅𝑚𝑖𝑟
𝜌

 

Длина хорды в плоскости отражателя, вдоль которой собирается 

черенковское излучение для заданного азимутального угла: 
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𝑅𝐷(𝜑) =

{
  
 

  
 
𝑟+(𝜑) = 𝑅𝑚𝑖𝑟 (

𝜌

𝑅𝑚𝑖𝑟
cos𝜑 + √1 −

𝜌2

𝑅𝑚𝑖𝑟
2 sin2 𝜑) , 𝜌 < 𝑅𝑚𝑖𝑟  

𝑟+(𝜑) − 𝑟−(𝜑) = 2𝑅𝑚𝑖𝑟√1 −
𝜌2

𝑅𝑚𝑖𝑟
2 sin2 𝜑 , 𝜌 > 𝑅𝑚𝑖𝑟  

 

𝐷(𝜑) =

{
 
 

 
 𝜌

𝑅𝑚𝑖𝑟
cos 𝜑 + √1 −

𝜌2

𝑅𝑚𝑖𝑟
2 sin2 𝜑 , 𝜌 < 𝑅𝑚𝑖𝑟  

2√1 −
𝜌2

𝑅𝑚𝑖𝑟
2 sin2 𝜑 , 𝜌 > 𝑅𝑚𝑖𝑟  

 

Проверка чётности хордовой функции: 

𝑟±(−𝜑) = 𝜌 cos(−𝜑) ± √𝑅𝑚𝑖𝑟
2 − 𝜌2 sin2(−𝜑) = 𝜌 cos𝜑 ± √𝑅𝑚𝑖𝑟

2 − 𝜌2 sin2 𝜑 = 𝑟±(𝜑) 

𝑅𝐷(−𝜑) = {
𝑟+(−𝜑), 𝜌 < 𝑅𝑚𝑖𝑟  

𝑟+(−𝜑) − 𝑟−(−𝜑), 𝜌 > 𝑅𝑚𝑖𝑟  
= {

𝑟+(𝜑), 𝜌 < 𝑅𝑚𝑖𝑟  

𝑟+(𝜑) − 𝑟−(𝜑), 𝜌 > 𝑅𝑚𝑖𝑟   
= 𝑅𝑚𝑖𝑟𝐷(𝜑) 

В случаи нулевого прицельного параметра: 

𝜌 = 0 ⇒ 𝐷(𝜑) =
0

𝑅𝑚𝑖𝑟
cos 𝜑 + √1 −

02

𝑅𝑚𝑖𝑟
2 sin2 𝜑 = 1 

(распределение длин хорд равномерно по азимутальному углу) 

В случаи граничного прицельного параметра: 

𝜌 = 𝑅𝑚𝑖𝑟 ∩ |𝜑| <
𝜋

2
⇒ 𝐷(𝜑) =

𝑅𝑚𝑖𝑟

𝑅𝑚𝑖𝑟
cos𝜑 + √1 −

𝑅𝑚𝑖𝑟
2

𝑅𝑚𝑖𝑟
2 sin2 𝜑 = cos𝜑 + √cos2 𝜑 = 

= cos𝜑 + |cos𝜑| = 2 cos𝜑 = 2 cos
𝜔𝜌

2
 

𝜌 = 𝑅 ∩ |𝜑| <
𝜋

2
⇒ 𝐷(𝜑) = 2√1 −

𝑅𝑚𝑖𝑟
2

𝑅𝑚𝑖𝑟
2 sin2 𝜑 = 2√cos2𝜑 = 

= 2|cos𝜑| = 2 cos 𝜑 = 2 cos
𝜔𝜌

2
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(равенство длин хорд в граничном случаи выполняется;  

распределение длин хорд гармонично по азимутальному углу)  

В случаи бесконечного прицельного параметра: 

𝜌 → ∞ ⇒ 𝐷(𝜑) = lim
𝜌→∞

(2√1 −
𝜌2

𝑅𝑚𝑖𝑟
2 sin2 𝜑) = 2√1 −

lim
𝜌→∞

(𝜌2 sin2 𝜑)

𝑅𝑚𝑖𝑟
2 = 

= 2√1 −
lim
𝜌→∞

(𝜌2𝜑2)

𝑅𝑚𝑖𝑟
2 = 2

√
1 −

lim
𝜌→∞

(𝜌2 (
𝑅𝑚𝑖𝑟 sin 𝜔𝜌

𝜌
)
2

)

𝑅𝑚𝑖𝑟
2 = 

= 2√1 −
lim
𝜌→∞

(𝑅𝑚𝑖𝑟
2 sin2 𝜔𝜌)

𝑅𝑚𝑖𝑟
2 = 2√1 −

𝑅𝑚𝑖𝑟
2 sin2 𝜔𝜌

𝑅𝑚𝑖𝑟
2 = 2√cos2𝜔𝜌 = 2|cos𝜔𝜌| 

(длины хорд остаются конечными даже при бесконечно малых азимутальных 

углах; распределение длин хорд гармонично по азимутальному углу)  

Расчёт площади сегмента зеркала,  

собирающего свет в один пиксель 

Площадь сегмента зеркала, собирающего свет в диапазоне углов от 0 до 𝜑  

в мюонной системе координат: 

𝑆±(𝜑) =
1

2
∫ 𝑟±

2(𝜑)𝑑𝜑

𝜑

0

=
1

2
∫ (𝜌 cos 𝜑 ± √𝑅𝑚𝑖𝑟

2 − 𝜌2 sin2 𝜑)

2

𝑑𝜑

𝜑

0

= 

=
1

2
∫ (𝜌2 cos2𝜑 + 𝑅𝑚𝑖𝑟

2 − 𝜌2 sin2 𝜑 ± 2𝜌 cos𝜑√𝑅𝑚𝑖𝑟
2 − 𝜌2 sin2 𝜑)𝑑𝜑

𝜑

0

= 

=
1

2
∫ (𝑅𝑚𝑖𝑟

2 + 𝜌2 cos 2𝜑 ± 2𝜌 cos𝜑 √𝑅𝑚𝑖𝑟
2 − 𝜌2 sin2 𝜑)𝑑𝜑

𝜑

0

= 
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=
1

2
(𝑅𝑚𝑖𝑟

2 ∫ 𝑑𝜑

𝜑

0

+ 𝜌2∫ cos 2𝜑 𝑑𝜑

𝜑

0

± 2𝜌∫ cos𝜑 √𝑅𝑚𝑖𝑟
2 − 𝜌2 sin2 𝜑 𝑑𝜑

𝜑

0

) = 

=
1

2
(𝑅𝑚𝑖𝑟

2 ∫ 𝑑𝜑

𝜑

0

+
𝜌2

2
∫ cos 2𝜑 𝑑(2𝜑)

𝜑

0

± 2𝜌𝑅𝑚𝑖𝑟∫√1 −
𝜌2

𝑅2
sin2 𝜑𝑑(sin𝜑)

𝜑

0

) = 

=
1

2
(𝑅𝑚𝑖𝑟

2 ∫ 𝑑𝜑

𝜑

0

+
𝜌2

2
∫ cos 2𝜑 𝑑(2𝜑)

𝜑

0

± 2𝑅𝑚𝑖𝑟
2 ∫√1 − (

𝜌

𝑅𝑚𝑖𝑟
sin 𝜑)

2

𝑑 (
𝜌

𝑅𝑚𝑖𝑟
sin 𝜑)

𝜑

0

) = 

=
1

2

(

 
 
𝑅𝑚𝑖𝑟
2 𝜑|0

𝜑
+
𝜌2

2
sin 2𝜑|0

𝜑
± 2𝑅𝑚𝑖𝑟

2
arcsin (

𝜌
𝑅𝑚𝑖𝑟

sin 𝜑) +
𝜌
𝑅𝑚𝑖𝑟

sin 𝜑√1 − (
𝜌
𝑅𝑚𝑖𝑟

sin𝜑)
2

2
||

0

𝜑

)

 
 
= 

=
𝑅𝑚𝑖𝑟
2

2
(𝜑|0

𝜑
+

𝜌2

2𝑅𝑚𝑖𝑟
2 sin 2𝜑|0

𝜑
±(arcsin (

𝜌

𝑅𝑚𝑖𝑟
sin𝜑) +

𝜌

𝑅𝑚𝑖𝑟
sin𝜑 √1 −

𝜌2

𝑅𝑚𝑖𝑟
2 sin2 𝜑)|

0

𝜑

) = 

=
𝑅𝑚𝑖𝑟
2

2
(𝜑 +

𝜌2

2𝑅𝑚𝑖𝑟
2 sin 2𝜑 ± arcsin (

𝜌

𝑅𝑚𝑖𝑟
sin 𝜑) ±

𝜌

𝑅𝑚𝑖𝑟
sin 𝜑√1 −

𝜌2

𝑅𝑚𝑖𝑟
2 sin2 𝜑) − 

−
𝑅𝑚𝑖𝑟
2

2
(0 +

𝜌2

2𝑅𝑚𝑖𝑟
2 sin 0 ± arcsin (

𝜌

𝑅𝑚𝑖𝑟
sin 0) ±

𝜌

𝑅𝑚𝑖𝑟
sin 0√1 −

𝜌2

𝑅𝑚𝑖𝑟
2 sin2 0) = 

=
𝑅𝑚𝑖𝑟
2

2
(𝜑 +

𝜌2

2𝑅𝑚𝑖𝑟
2 sin 2𝜑 ± arcsin (

𝜌

𝑅𝑚𝑖𝑟
sin 𝜑) ±

𝜌

𝑅𝑚𝑖𝑟
sin𝜑√1 −

𝜌2

𝑅𝑚𝑖𝑟
2 sin2 𝜑) 

В случаи, если 𝜌 < 𝑅𝑚𝑖𝑟: 

𝜋𝑅𝑚𝑖𝑟
2 𝜎(𝜑) = 𝑆+(𝜑) =

𝑅𝑚𝑖𝑟
2

2
(𝜑 +

𝜌2

2𝑅𝑚𝑖𝑟
2 sin 2𝜑 + arcsin (

𝜌

𝑅𝑚𝑖𝑟
sin𝜑)+

𝜌

𝑅𝑚𝑖𝑟
sin𝜑√1 −

𝜌2

𝑅𝑚𝑖𝑟
2 sin2 𝜑) 

В случаи, если 𝜌 > 𝑅𝑚𝑖𝑟: 

𝜋𝑅𝑚𝑖𝑟
2 𝜎(𝜑) = 𝑆+(𝜑) − 𝑆−(𝜑) = 
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=
𝑅𝑚𝑖𝑟
2

2
(𝜑 +

𝜌2

2𝑅𝑚𝑖𝑟
2 sin 2𝜑 + arcsin (

𝜌

𝑅𝑚𝑖𝑟
sin 𝜑) +

𝜌

𝑅𝑚𝑖𝑟
sin 𝜑√1 −

𝜌2

𝑅𝑚𝑖𝑟
2 sin2 𝜑) − 

−
𝑅𝑚𝑖𝑟
2

2
(𝜑 +

𝜌2

2𝑅𝑚𝑖𝑟
2 sin 2𝜑 − arcsin (

𝜌

𝑅𝑚𝑖𝑟
sin 𝜑) −

𝜌

𝑅𝑚𝑖𝑟
sin 𝜑√1 −

𝜌2

𝑅𝑚𝑖𝑟
2 sin2 𝜑) = 

= 𝑅𝑚𝑖𝑟
2 (arcsin (

𝜌

𝑅𝑚𝑖𝑟
sin𝜑) +

𝜌

𝑅𝑚𝑖𝑟
sin𝜑 √1 −

𝜌2

𝑅𝑚𝑖𝑟
2 sin2 𝜑) 

В итоге: 

𝜎(𝜑) =

{
  
 

  
 1

2𝜋
(𝜑 +

𝜌2

2𝑅𝑚𝑖𝑟
2 sin 2𝜑 + arcsin (

𝜌

𝑅𝑚𝑖𝑟
sin 𝜑) +

𝜌

𝑅𝑚𝑖𝑟
sin 𝜑√1 −

𝜌2

𝑅𝑚𝑖𝑟
2 sin2 𝜑) , 𝜌 < 𝑅𝑚𝑖𝑟

1

𝜋
(arcsin (

𝜌

𝑅𝑚𝑖𝑟
sin 𝜑) +

𝜌

𝑅𝑚𝑖𝑟
sin 𝜑√1 −

𝜌2

𝑅𝑚𝑖𝑟
2 sin2 𝜑) , 𝜌 > 𝑅𝑚𝑖𝑟

 

Тогда относительная площадь сегмента зеркала, собирающего свет в пиксель, 

ограниченный азимутальными углами 𝜑− и 𝜑+: 

∆𝜎 = |𝜎(𝜑+) − 𝜎(𝜑−)| 

Проверка нечётности сегментной функции: 

𝑆±(−𝜑) =
𝑅𝑚𝑖𝑟
2

2
(−𝜑 +

𝜌2

2𝑅𝑚𝑖𝑟
2 sin(−2𝜑) ± arcsin(

𝜌

𝑅𝑚𝑖𝑟
sin(−𝜑)) ±

𝜌

𝑅𝑚𝑖𝑟
sin(−𝜑)√1 −

𝜌2

𝑅𝑚𝑖𝑟
2 sin2(−𝜑)) = 

=
𝑅𝑚𝑖𝑟
2

2
(−𝜑 −

𝜌2

2𝑅𝑚𝑖𝑟
2 sin 2𝜑 ∓ arcsin (

𝜌

𝑅𝑚𝑖𝑟
sin𝜑) ∓

𝜌

𝑅𝑚𝑖𝑟
sin 𝜑√1 −

𝜌2

𝑅𝑚𝑖𝑟
2 sin2𝜑) = −𝑆±(𝜑) 

𝜋𝑅𝑚𝑖𝑟
2 𝜎(−𝜑) = {

𝑆+(−𝜑), 𝜌 < 𝑅𝑚𝑖𝑟
𝑆+(−𝜑) − 𝑆−(−𝜑), 𝜌 > 𝑅𝑚𝑖𝑟

= {
−𝑆+(𝜑), 𝜌 < 𝑅𝑚𝑖𝑟

−𝑆+(𝜑) + 𝑆−(𝜑), 𝜌 > 𝑅𝑚𝑖𝑟
= −𝜋𝑅𝑚𝑖𝑟

2 𝜎(𝜑) 

В случаи нулевого прицельного параметра: 

𝜌 = 0 ⇒ 𝜎(𝜑) =
1

2𝜋
(𝜑 +

02

2𝑅𝑚𝑖𝑟
2 sin 2𝜑 + arcsin (

0

𝑅𝑚𝑖𝑟
sin𝜑) +

0

𝑅𝑚𝑖𝑟
sin𝜑√1 −

02

𝑅𝑚𝑖𝑟
2 sin2𝜑) =

𝜑

2𝜋
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∆𝜎 = |𝜎(𝜑+) − 𝜎(𝜑−)| = |
𝜑+
2𝜋

−
𝜑−
2𝜋
| = |

𝜑+ − 𝜑−
2𝜋

| = |
∆𝜑

2𝜋
| =

∆𝜑

2𝜋
=
∆𝜔пред

2𝜋
 

(распределение площадей сегментов равномерно по азимутальному углу) 

В случаи граничного прицельного параметра: 

𝜌 = 𝑅𝑚𝑖𝑟 ∩ |𝜑| <
𝜋

2
⇒ 𝜎(𝜑) =

1

2𝜋
(𝜑 +

𝑅𝑚𝑖𝑟
2

2𝑅𝑚𝑖𝑟
2 sin 2𝜑 + arcsin(

𝑅𝑚𝑖𝑟
𝑅𝑚𝑖𝑟

sin𝜑) +
𝑅𝑚𝑖𝑟
𝑅𝑚𝑖𝑟

sin𝜑√1 −
𝑅𝑚𝑖𝑟
2

𝑅𝑚𝑖𝑟
2 sin2𝜑) = 

=
1

2𝜋
(𝜑 +

sin 2𝜑

2
+ arcsin sin𝜑 +

𝑅𝑚𝑖𝑟
𝑅𝑚𝑖𝑟

sin𝜑 √cos2𝜑) = 

=
1

2𝜋
(𝜑 +

sin 2𝜑

2
+ 𝜑 +

𝑅𝑚𝑖𝑟
𝑅𝑚𝑖𝑟

sin 𝜑 |cos𝜑|) =
1

2𝜋
(𝜑 +

sin 2𝜑

2
+ 𝜑 +

𝑅𝑚𝑖𝑟
𝑅𝑚𝑖𝑟

sin 𝜑 cos𝜑) = 

=
1

2𝜋
(𝜑 +

sin 2𝜑

2
+ 𝜑 +

sin 2𝜑

2
) =

1

𝜋
(𝜑 +

sin 2𝜑

2
) =

1

𝜋
(
𝜔𝜌

2
+
sin𝜔𝜌

2
) =

𝜔𝜌 + sin𝜔𝜌

2𝜋
 

𝜌 = 𝑅 ∩ |𝜑| <
𝜋

2
⇒ 𝜎(𝜑) =

1

𝜋
(arcsin (

𝑅𝑚𝑖𝑟

𝑅𝑚𝑖𝑟
sin𝜑) +

𝑅𝑚𝑖𝑟

𝑅𝑚𝑖𝑟
sin𝜑√1 −

𝑅𝑚𝑖𝑟
2

𝑅𝑚𝑖𝑟
2 sin2 𝜑) = 

=
1

𝜋
(arcsin sin𝜑 + sin𝜑 √cos2𝜑) =

1

𝜋
(𝜑 + sin 𝜑 |cos𝜑|) = 

=
1

𝜋
(𝜑 + sin𝜑 cos𝜑) =

1

𝜋
(𝜑 +

sin 2𝜑

2
) =

1

𝜋
(
𝜔𝜌

2
+
sin𝜔𝜌

2
) =

𝜔𝜌 + sin𝜔𝜌

2𝜋
 

(равенство площадей сегментов в граничном случаи выполняется) 

∆𝜎 = |𝜎(𝜑+) − 𝜎(𝜑−)| = |
1

𝜋
(𝜑+ +

sin 2𝜑+
2

) −
1

𝜋
(𝜑− +

sin 2𝜑−
2

)| = 

= |
1

𝜋
(𝜑+ − 𝜑− +

sin 2𝜑+ − sin 2𝜑−

2
)| = |

𝜑+ − 𝜑− + sin(𝜑+ − 𝜑−) cos(𝜑+ + 𝜑−)

𝜋
| = 

= |
∆𝜑 + sin ∆𝜑 cos 2𝜑

𝜋
| =

∆𝜑 + sin ∆𝜑 cos 2𝜑

𝜋
=

∆𝜔
2
+ sin

∆𝜔
2
cos𝜔𝜌

𝜋
 

(распределение площадей сегментов гармонично по азимутальному углу) 

В случаи бесконечного прицельного параметра: 
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𝜌 → ∞ ⇒ 𝜎(𝜑) = lim
𝜌→∞

(
1

𝜋
(arcsin (

𝜌

𝑅𝑚𝑖𝑟
sin 𝜑) +

𝜌

𝑅𝑚𝑖𝑟
sin 𝜑√1 −

𝜌2

𝑅𝑚𝑖𝑟
2 sin2 𝜑)) = 

=
1

𝜋
(arcsin (

lim
𝜌→∞

(𝜌 sin 𝜑)

𝑅𝑚𝑖𝑟
) +

lim
𝜌→∞

(𝜌 sin 𝜑)

𝑅𝑚𝑖𝑟
√1 −

lim
𝜌→∞

(𝜌2 sin2 𝜑)

𝑅𝑚𝑖𝑟
2 ) = 

=
1

𝜋
(arcsin (

lim
𝜌→∞

(𝜌𝜑)

𝑅𝑚𝑖𝑟
) +

lim
𝜌→∞

(𝜌𝜑)

𝑅𝑚𝑖𝑟
√1 −

lim
𝜌→∞

(𝜌2𝜑2)

𝑅𝑚𝑖𝑟
2 ) = 

=
1

𝜋

(

  
 
arcsin(

lim
𝜌→∞

(𝜌
𝑅𝑚𝑖𝑟 sin𝜔𝜌

𝜌 )

𝑅𝑚𝑖𝑟
)+

lim
𝜌→∞

(𝜌
𝑅𝑚𝑖𝑟 sin𝜔𝜌

𝜌 )

𝑅𝑚𝑖𝑟

√
1 −

lim
𝜌→∞

(𝜌2 (
𝑅𝑚𝑖𝑟 sin𝜔𝜌

𝜌 )
2

)

𝑅𝑚𝑖𝑟
2

)

  
 
= 

=
1

𝜋
(arcsin (

lim
𝜌→∞

(𝑅𝑚𝑖𝑟 sin 𝜔𝜌)

𝑅𝑚𝑖𝑟
) +

lim
𝜌→∞

(𝑅𝑚𝑖𝑟 sin𝜔𝜌)

𝑅𝑚𝑖𝑟
√1 −

lim
𝜌→∞

(𝑅𝑚𝑖𝑟
2 sin2𝜔𝜌)

𝑅𝑚𝑖𝑟
2 ) = 

=
1

𝜋
(arcsin (

𝑅𝑚𝑖𝑟 sin 𝜔𝜌

𝑅𝑚𝑖𝑟
) +

𝑅𝑚𝑖𝑟 sin𝜔𝜌

𝑅𝑚𝑖𝑟
√1 −

𝑅𝑚𝑖𝑟
2 sin2 𝜔𝜌

𝑅𝑚𝑖𝑟
2 ) = 

=
1

𝜋
(arcsin sin𝜔𝜌 + sin 𝜔𝜌√cos

2𝜑) =
1

𝜋
(arcsin sin 𝜔𝜌 + sin𝜔𝜌 |cos 𝜔𝜌|) = 

= {

1

𝜋
(arcsin sin 𝜔𝜌 + sin𝜔𝜌 cos𝜔𝜌), |𝜔𝜌| <

𝜋

2
1

𝜋
(arcsin sin(𝜋 − 𝜔𝜌) − sin𝜔𝜌 cos𝜔𝜌),

𝜋

2
< |𝜔𝜌| < 𝜋

= 

= {

1

𝜋
(𝜔𝜌 +

sin 2𝜔𝜌

2
) , |𝜔𝜌| <

𝜋

2
1

𝜋
(𝜋 − 𝜔𝜌 −

sin 2𝜔𝜌

2
) ,
𝜋

2
< |𝜔𝜌| < 𝜋

 

В случаи, если |𝜔𝜌| <
𝜋

2
: 



52 
 

∆𝜎 = |𝜎 (𝜔𝜌 +
∆𝜔пред

2
) − 𝜎 (𝜔𝜌 +

∆𝜔пред

2
)| = 

= |
1

𝜋
(𝜔𝜌 +

∆𝜔пред

2
+
sin 2 (𝜔𝜌 +

∆𝜔пред
2

)

2
)−

1

𝜋
(𝜔𝜌 −

∆𝜔пред

2
+
sin 2 (𝜔𝜌 −

∆𝜔пред
2

)

2
)| = 

= |
1

𝜋
(∆𝜔 +

sin 2 (𝜔𝜌 +
∆𝜔пред
2

) − sin 2 (𝜔𝜌 −
∆𝜔пред
2

)

2
)| = 

= |
∆𝜔пред + sin ∆𝜔пред cos 2𝜔𝜌

𝜋
| =

∆𝜔пред + sin ∆𝜔пред cos 2𝜔𝜌

𝜋
 

В случаи, если 
𝜋

2
< |𝜔𝜌| < 𝜋: 

∆𝜎 = |𝜎 (𝜔𝜌 +
∆𝜔пред

2
) − 𝜎 (𝜔𝜌 +

∆𝜔пред

2
)| = 

= |
1

𝜋
(𝜋 − (𝜔𝜌 +

∆𝜔пред

2
) −

sin 2(𝜔𝜌 +
∆𝜔пред
2 )

2
)−

1

𝜋
(𝜋 − (𝜔𝜌 −

∆𝜔пред

2
) −

sin 2(𝜔𝜌 −
∆𝜔пред
2 )

2
)| = 

= |
1

𝜋
(−∆𝜔пред −

sin 2 (𝜔𝜌 +
∆𝜔пред
2

) − sin 2 (𝜔𝜌 −
∆𝜔пред
2

)

2
)| = 

= |−
∆𝜔пред + sin∆𝜔пред cos 2𝜔𝜌

𝜋
| = |

∆𝜔пред + sin∆𝜔пред cos 2𝜔𝜌

𝜋
| =

∆𝜔пред + sin∆𝜔пред cos 2𝜔𝜌

𝜋
 

В итоге: 

∆𝜎 =
∆𝜔пред + sin ∆𝜔 cos 2𝜔𝜌

𝜋
 

(площадь сегментов остаётся конечной даже при бесконечно малых 

азимутальных углах; распределение площадей сегментов гармонично по 

азимутальному углу)  

В случаи интегрирования по всей поверхности зеркала: 
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𝜌 < 𝑅𝑚𝑖𝑟 ⇒ |𝜑| < 𝜋 ⇒ 𝜎(𝜋) =
1

2𝜋
(𝜋 +

𝜌2

2𝑅𝑚𝑖𝑟
2 sin 2𝜋 + arcsin(

𝜌

𝑅𝑚𝑖𝑟
sin𝜋) +

𝜌

𝑅𝑚𝑖𝑟
sin𝜋√1 −

𝜌2

𝑅𝑚𝑖𝑟
2 sin2 𝜋) =

1

2
 

∆𝜎 = 𝜎(𝜋) − 𝜎(−𝜋) = 𝜎(𝜋) + 𝜎(𝜋) = 2𝜎(𝜋) = 1 

𝜌 > 𝑅 ⇒ |𝜑| < arcsin
𝑅𝑚𝑖𝑟
𝜌

⇒ 𝜎 (arcsin
𝑅𝑚𝑖𝑟
𝜌
) = 

=
1

𝜋
(arcsin (

𝜌

𝑅𝑚𝑖𝑟
sin arcsin

𝑅𝑚𝑖𝑟
𝜌
) +

𝜌

𝑅𝑚𝑖𝑟
sin arcsin

𝑅𝑚𝑖𝑟
𝜌

√1 −
𝜌2

𝑅𝑚𝑖𝑟
2 sin2 arcsin

𝑅𝑚𝑖𝑟
𝜌
) = 

=
1

𝜋
(arcsin (

𝜌

𝑅𝑚𝑖𝑟

𝑅𝑚𝑖𝑟
𝜌
) +

𝜌

𝑅𝑚𝑖𝑟

𝑅𝑚𝑖𝑟
𝜌

√1 −
𝜌2

𝑅𝑚𝑖𝑟
2

𝑅𝑚𝑖𝑟
2

𝜌2
) =

1

𝜋
arcsin(1) =

1

𝜋

𝜋

2
=
1

2
 

∆𝜎 = 𝜎 (arcsin
𝑅𝑚𝑖𝑟
𝜌
) − 𝜎 (−arcsin

𝑅𝑚𝑖𝑟
𝜌
) = 𝜎 (arcsin

𝑅𝑚𝑖𝑟
𝜌
) + 𝜎 (arcsin

𝑅𝑚𝑖𝑟
𝜌
) = 2𝜎 (arcsin

𝑅𝑚𝑖𝑟
𝜌
) = 1 

(интегрирование по всей поверхности зеркала в обоих случаях даёт полную 

площадь его круга) 

Расчёт плотности распределения фотонов в кольце 

Количество черенковских фотонов, детектирующихся в заданном пикселе 

кольца: 

𝐼 = 𝜓𝑁𝜎 = 2𝜋𝛼∆𝜎𝜓𝐿 sin2 𝜃пред ∫
𝜂(𝜆)

𝜆2
𝑑𝜆

𝜆𝑚𝑎𝑥

𝜆𝑚𝑖𝑛

= 

= 2𝜋𝛼𝐿 sin2 𝜃пред ∫
𝜂(𝜆)

𝜆2
𝑑𝜆

𝜆𝑚𝑎𝑥

𝜆𝑚𝑖𝑛

∗ ∆𝜎𝜓 = 

= 2 ∗ 3,14 ∗
1

137
∗ 94,29 м ∗ sin2 1,31° ∗ 463055 м−1 ∗ ∆𝜎𝜓 = 

=
2 ∗ 3,14 ∗ 94,29 ∗ sin2 1,31° ∗ 463055

137
∆𝜎𝜓 = 1046∆𝜎𝜓 

В случаи нулевого прицельного параметра: 
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𝜌 = 0 ⇒ ∆𝜎 =
∆𝜔пред

2𝜋
⇒ 𝐼 = 𝛼∆𝜔пред𝜓𝐿 sin

2 𝜃пред ∫
𝜂(𝜆)

𝜆2
𝑑𝜆

𝜆𝑚𝑎𝑥

𝜆𝑚𝑖𝑛

= 

= 𝛼∆𝜔пред𝐿 sin
2 𝜃пред ∫

𝜂(𝜆)

𝜆2
𝑑𝜆

𝜆𝑚𝑎𝑥

𝜆𝑚𝑖𝑛

∗ 𝜓 = 

=
1

137
∗
15,83°

180°
∗ 3,14 ∗ 94,29 м ∗ sin2 1,31° ∗ 463055 м−1 ∗ 𝜓 = 

=
15,83 ∗ 3,14 ∗ 94,29 ∗ sin2 1,31° ∗ 463055

137 ∗ 180
∗ 𝜓 = 46𝜓 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


