Search of Higgs production with decay into the Z boson and a photon

Proklova Nadezda

MEPhI@ATLAS meeting, 14 April 2020

About me and my projects

Joint PhD student at MEPhI & Radboud University

Projects:

1) TRT software

- Qualification: Developments in the TRT dE/dx time-over-threshold algorithm for particle identification [link]
- Current project: MC Rt/T0 calibration studies

2) E/gamma performance

- photon isolation
- photon identification

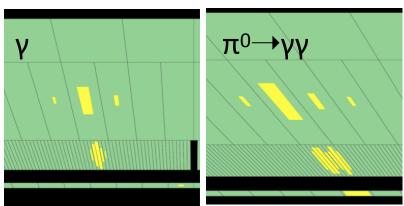
3) Physics analysis: $H \rightarrow Z\gamma$ search

- thesis in progress

Extra personpower:

- Natalia Zubova (master student), involved in performance studies

Photon performance: Photon ID


Photon reconstruction and identification

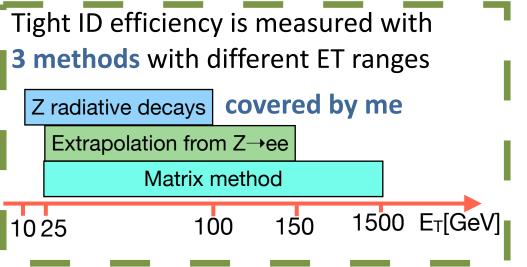
Prompt photons:

- Direct photon from the hard scattering process
- Fragmentation photon from a parton (less isolated)
- Background:
- jets with large EM fraction (e.g. π0, η) that can fake photons
- Electron with similar interaction in calorimeter

Tight ID

- Is optimised as function of E_T, depends on η and conversion status (some details about optimisation are going to be provided in the analysis section)
 - measurements are done in data :
 - 1) MC shower shapes are shifted to data so that their means match the data means
 - 2) <u>residual differences in MC has to be</u> <u>corrected later to data</u>

ID: 9 discriminating variables (DVs) based on energy in cells of ECAL and leakage in hadronic calorimeter HCAL


loose ID

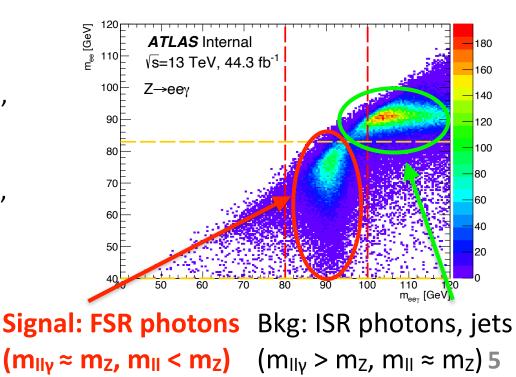
used by triggers or as background control region

tight ID

- tighter cuts on DVs used by loose ID
- used for offline analysis

Photon reconstruction and identification

RadZ: low E_T range, but pure photon sample (P=95-99%)


For FSR selection we use cuts on M_{II} and M_{IIγ}

RadZ selection:

<u>Leptons</u>: Et(el,mu) > 10 GeV, $|\eta_{el}| < 2.47$, $|\eta_{mu}| < 2.7$, Loose isolation

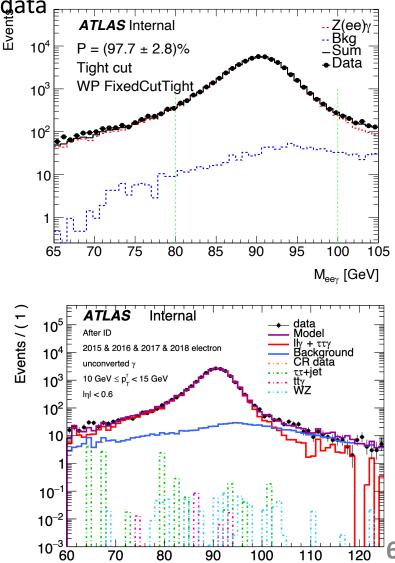
<u>Photons</u>: Et > 10 GeV, Loose OR Tight iso, deltaR(el/mu, γ) > 0.4, |η| < 2.37

<u>Event selection</u>: 40 < Mll < 83 GeV; 80 < Mllγ < 100 GeV, trigger matching

Methods of background estimation

Purity estimation with a template fit

- Number of background events could be estimated in data from the template fit Signal (Zllg) PDF + background (Z+jets) PDF = fit to $d_{ata}_{e^{-1}}$

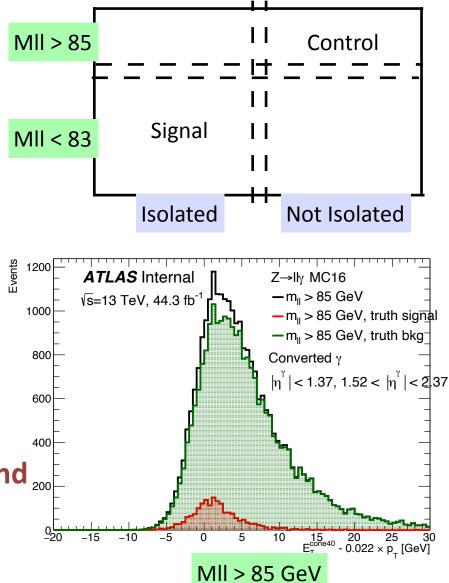

Purity:
$$P = \frac{N_{sig}}{N_{sig} + N_{bkg}}$$

 Efficiency is corrected by doing background subtraction:

$$\varepsilon = \frac{N_{probes,pID} - N_{bkg,pID}}{N_{probes} - N_{bkg}} = \frac{N_{sig,pID}}{N_{sig}}$$

Method is not used anymore as a nominal method (only for a cross-check):

- allows to correct data only up to ~25 GeV (limited statistics)
- Z+jets only bkg doesn't describe tails of mass distribution
- Is replaced by template fit method with additional bkg sources



Methods of background estimation 2d sideband method

- <u>Use of not-isolated photons</u>: reversing one of the isolation variables
- Reversing Mll cut: for Mll > 85 GeV = almost all photons should be jets->γ
- N_{bkg} can be estimated by normalizing control bkg shape to the tail of signal (isolated) distribution
- Track isolation is pre-applied

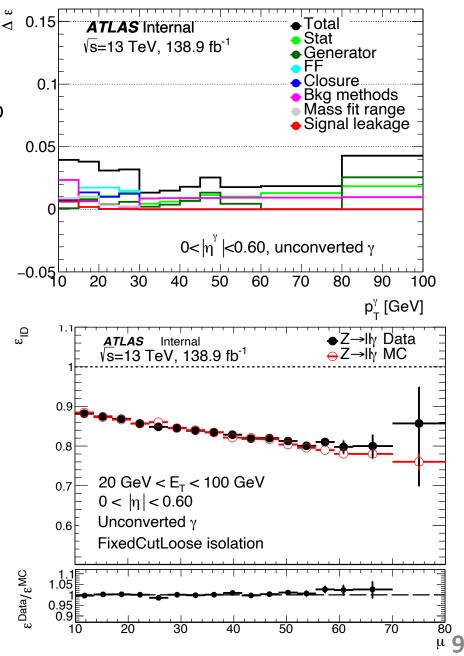
Method allows to estimate background 200 contamination up to ~40 GeV

Photon ID efficiency vs pT

are pT -dependent <u>Tight ID menu was optimised as pT-dependent in 2018:</u> ATLAS Simulation ATLAS Simulation Benefits: Cuts signal boundary sional boundar - x1.5-2 improvement in BKG rejection at pT > 100 GeV- increased signal efficiency at 10 < pT < 25 GeV (+ ~10-20%) $25 < p_T < 30$ $80 < p_T < 100$ ₽, ATLAS Internal Data, DD method Data, DD method ATLAS Internal \sqrt{s} =13 TeV, 138.9 fb⁻¹ A Data, MF methhod 1.1⊢ \sqrt{s} =13 TeV, 138.9 fb⁻¹ A Data, MF methhod 1.1⊢ MC16 $0.80 < |\eta^{\gamma}| < 1.37$ MC16 $0 < |\eta^{\gamma}| < 0.60$ 0.9 0.9 0.8 0.8 0.7 0.7 0.6 0.6 Unconverted y Converted v **FixedCutLoose FixedCutLoose** 0.5 0.5 1.1 Data / MC 1.1 Data / MC 1.05 1.05 0.95 0.95 0.9등 0.9 30 50 80 90 100 20 30 50 60 80 90 100 p_ [GeV] p_[GeV]

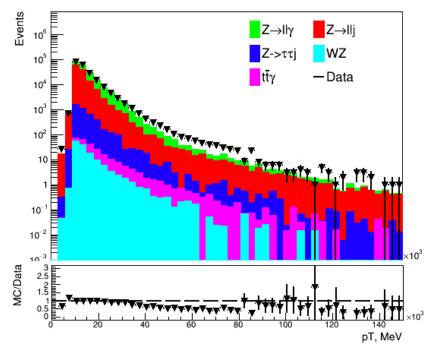
Monte-Carlo and Data efficiencies agrees well, SFs ~ 1 for different pT/eta bins

All shower shapes

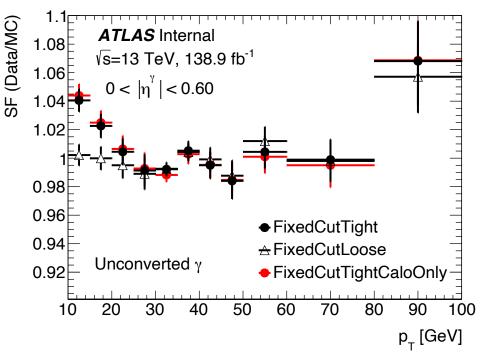

Systematic uncertainties

- 1) 2 methods of background estimation:
 - take the difference between isolation based method to mass-based method
- 3) uncertainty on FF variations tight ID is varied for DD method
- 4) uncertainty of DD method: closure method
- 5) uncertainty of Mass fit method:
 - Mass fit range variation
 - Signal leakage
- 6) MC generator
 - difference in MC efficiency between Sherpa and PowhegPythia generators

Extra checks:


- 1) compatibility between different isolation WPs
- 2) pileup dependence

MC describes Data well except for very high pileup > 60 Visible decrease of phID with pileup ~10-20%



N. Zubova

Known problems

Known MC backgrounds don't describe data at high pT > 40 GeV (difference is ~10-50%) for anti-tight ID and anti or no isolation

- General correlation between photon ID and isolation (both use calorimeter information)
- isolation cone dependency at low pT (ie cone40/cone20), noticed the effect only with full Run2 data, rel.21

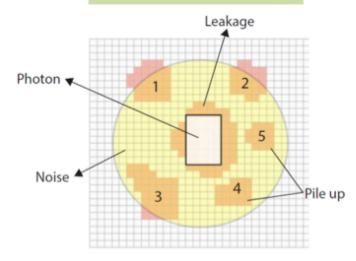
Photon performance: Photon isolation

Photon isolation

Photon isolation suppress further backgrounds after photonID

- Energy flow around fakes is larger than for prompt photons

Calorimeter isolation:


 $\Sigma E_T/E_T < 0.065/0.022$, the sum is over all calo clusters in a cone $\Delta R < 0.2 / 0.4$

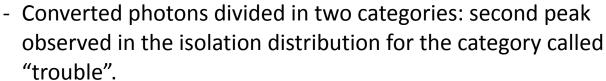
 $E_{iso,corr}^{T} = \sum_{i,\Delta R < 0.4}^{clusters} E_{i,raw}^{T} - E_{core}^{T} - E_{leakage}^{T}(p_{T},\eta) - E_{pileup}^{T}(\eta)$ Pileup correction

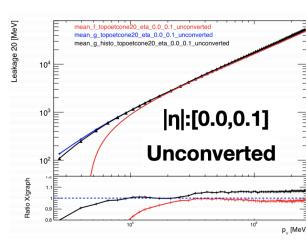
Track isolation:

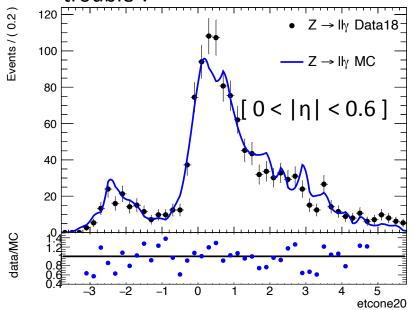
 $\Sigma p_T/E_T < 0.05$, loose vertex association, sum is over all tracks (with $p_T > 1$ GeV) in a cone $\Delta R = 0.2$

Calorimeter isolation

Fakes: neutral hadrons in jets decaying into two photons


- Clusters around prompt (isolated) photons are coming from pileup.
- Clusters around fakes (non isolated photon candidates) are coming from other objects in the jet.

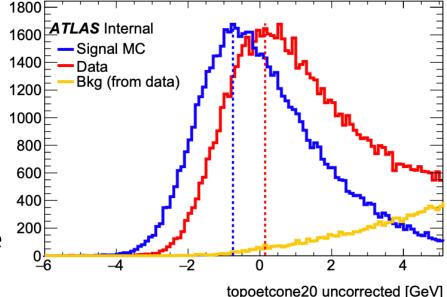

Photon calorimeter isolation


Photon energy component: fixed size window + energy leaking outside the window

Photon calo leakage corrections: corrects the energy leaking outside the fixed mask

- leaking outside the fixed mask
 - parametrization of the isolation energy distribution with ET for each of the $|\eta|$ bins using Crystal Ball functions.
 - fit the model with a pol-2 to obtain an ET-dependent correction in $|\eta|$ bins and conversion

Converted trouble category:


- Conversion type 3: two tracks, both with Si hits
- Asymmetric conversion: $E_{T,e_{subl}}/E_{T,e_{lead}} < 0.3$
- 30% of converted photons are trouble with increasing ET (~ 10 < ET < 25 GeV)
- Structures observed as a function of $|\eta|$ (barrel is affected)
- Around ~5-10% of the photons are classified in the "trouble" category.

Photon calorimeter isolation

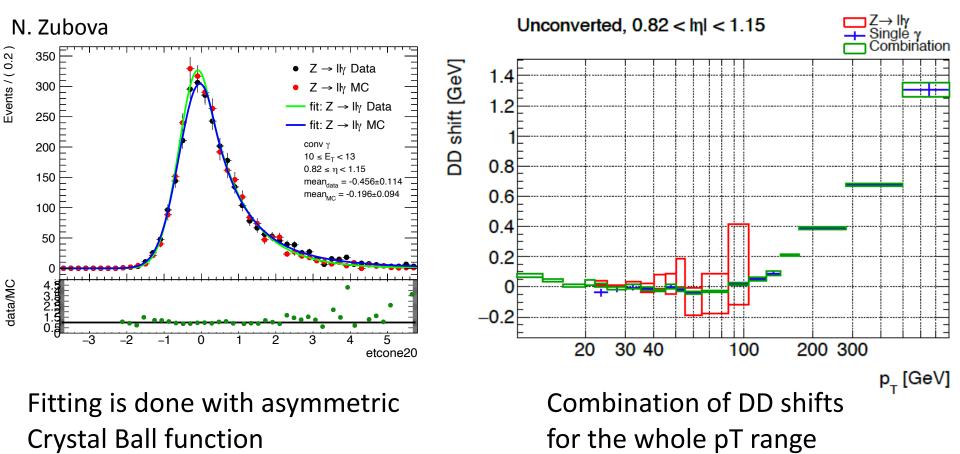
Isolation Working Points efficiency: $\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$ 1 measurement are done in data, and 1 MC is corrected according to it 1

1) MC shower shapes are shifted to data so that their means match the data means (DD shifts)


2) residual differences in MC has to be corrected later to data with SFs

Both measurements are obtained in different $|\eta|$, pT and photon conversion status.

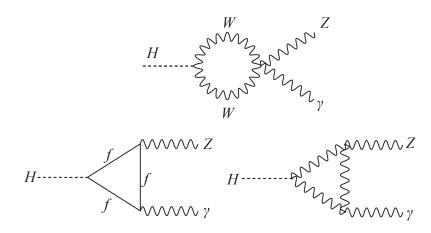
covered by me 10 < E_T < 100 GeV


SFs are measured for 3 isolation WPs (track+calo isolation)

SF are measured with Single Photons, separately for track and calo isolations

Photon calorimeter isolation

RadZ measurements: selection is described in phID DD shifts are measured as $\mu_{Data} - \mu_{MC}$ of isolation distribution


Higgs->Zγ search

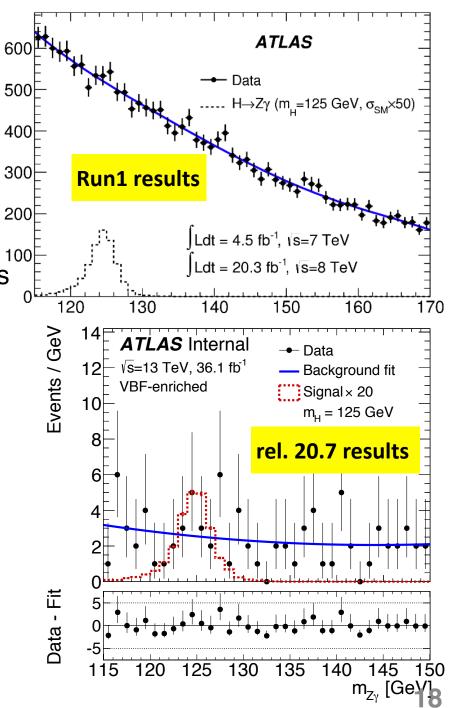
Motivation

- more difficult than Higgs→γγ
 -(B[H→Zγ]×B[Z→ee/μμ]= ~10⁻⁴)
- -BUT: Small background → great sensitivity (large QCD component for γγ backgrounds)
- Something what can be checked: - $B(H \rightarrow \gamma \gamma)/B(H \rightarrow Z \gamma)$ may

differentiate

- -In extended Higgs sector models [arxiv 1207.1065v2]
- -With additional light charged electroweak particles [arxiv 1206.1082v3]

Previous results


Events/Ge/ Run1: [Phys. Lett. B 732 (2014) 8–27] 24.8 fb⁻¹ of 7 + 8 TeV data $ee\gamma$ and $\mu\mu\gamma$ final states, categorisation is based on kinematic properties No significant excesses found Expected (Observed) limits at $mH = 125 \text{ GeV are: } 9(11) \times SM \text{ predictions}$

2015-2016 **36.1 fb**⁻¹ analysis: JHEP 10 (2017) 112

eey and $\mu\mu\gamma$ final states, categorisation is based on kinematic properties + MVA No significant excess over the expected background (6.6(5.2) x SM @95% CL)

Current Analysis:

Re-optimized full Run2 $H \rightarrow Z\gamma$ with ~3.9 times data as last publication;

Higgs->Ζγ samples

Full run2 data: 139 fb⁻¹

Higgs MC:

Process	Technique	Pythia8 version & tune	PDF set	QCD (gen.)	Normalisation
ggF	MiNLO [90–93] & NNLOPS [94, 95]	8.186, AZNLO [87]	NNPDF30 [73]	NNLO	NNNLO (QCD), NLO (EW) [43–52]
VBF	Powheg	8.186, AZNLO	NNPDF30	NLO	NNLO (QCD), NLO (EW) [53-55]
$q\bar{q} \rightarrow VH$	MiNLO [<mark>92, 96</mark>]	8.186, AZNLO	NNPDF30	NLO	NNLO (QCD), NLO (EW) [56-63]
tĪH	Powheg	8.230, A14 [<mark>85</mark>]	NNPDF23 [38]	NLO	NNLO (QCD), NLO (EW) [64–67]

New: $H \rightarrow \mu\mu$ signal to test its contamination (up to 3% among all categories)

Background:

- Sherpa Zγ main background (~80%): Full-sim in pT slices (selection/ categorization optimization), Fast-sim in mass slices and in 2 parton region (background templates)
- Madgraph Electroweak Zyjj (VBS): non-negligible after VBF selection
- **Z+jet** (~20%, reducible): Data-driven method (non-tight photons)

Higgs->Zγ triggers, object selection

	candidates	channel	single/di-lepton	trigger name
_ •	2015 data	$Z(\rightarrow ee)\gamma$	single electron	HLT_e24_lhmedium_L1EM20VH
Triggers:				HLT_e60_lhmedium,HLT_e120_lhloose
	2015 data	$Z(\rightarrow ee)\gamma$	di-electron	HLT_2e12_lhloose_L12EM10VH
Single-lepton,	2016 data	$Z(\rightarrow ee)\gamma$	single electron	HLT_e26_lhtight_nod0_ivarloose
0 1 <i>i</i>				HLT_e60_lhmedium_nod0, HLT_e140_lhloose_nod0
dilepton triggers	2016 data	$Z(\rightarrow ee)\gamma$	di-electron	HLT_2e17_lhvloose_nod0
	2017-2018 data	$Z(\rightarrow ee)\gamma$	single electron	HLT_e26_lhtight_nod0_ivarloose
				HLT_e60_lhmedium_nod0, HLT_e140_lhloose_nod0
	2017-2018 data	$Z(\rightarrow ee)\gamma$	di-electron	HLT_2e24_lhvloose_nod0
	2015 data	$Z(\rightarrow \mu\mu)\gamma$	single muon	HLT_mu26_imedium, HLT_mu50
	2015 data	$Z(\rightarrow \mu\mu)\gamma$	di-muon	HLT_mu22_mu8noL1
	2016 data	$Z(\rightarrow \mu\mu)\gamma$	single muon	HLT_mu26_imedium
				HLT_mu26_ivarmedium,HLT_mu50
	2016 data	$Z(\rightarrow \mu\mu)\gamma$	di-muon	HLT_mu22_mu8noL1
	2017-2018 data	$Z(\rightarrow \mu\mu)\gamma$	single muon	HLT_mu26_ivarmedium, HLT_mu50
	2017-2018 data	$Z(\rightarrow \mu\mu)\gamma$	di-muon	HLT_mu22_mu8noL1
	Lepton and Photon Preselection (before overlap removal)			
Object selection:	Cut	Electro	ons	Muons Photons
		10.0		

~5% higher sig	g. eff.
than medium	in Z→ee

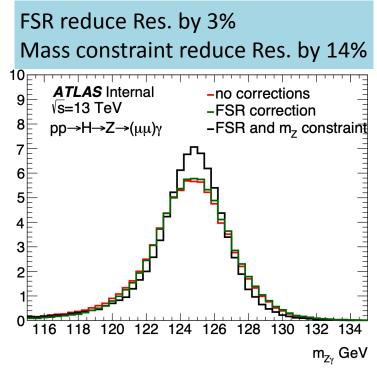
Lepton and Thoton Treselection (before overlap removal)							
Cut	Electrons	Muons	Photons				
p_{T}	> 10 GeV	> 10 GeV	> 10 GeV				
$ \eta $	$ \eta < 2.47$	$ \eta < 2.7$	$ \eta < 2.37$				
	exclude $1.37 < \eta < 1.52$	-	exclude $1.37 < \eta < 1.52$				
$ d_0 /\sigma_{d_0}$	< 5	< 3	-				
$z_0 \sin \theta$	< 0.5 mm	< 0.5 mm	-				
Identification	Loose	Medium	Loose				
Isolation	FCLoose	FCLoose	-				

Jet object for VBF: Anti-kt, pT > 25 GeV, |eta| < 4.4, removed in a cone size of 0.2 in the 2 final leptons or in any photon

Higgs->Zγ event selection

Events

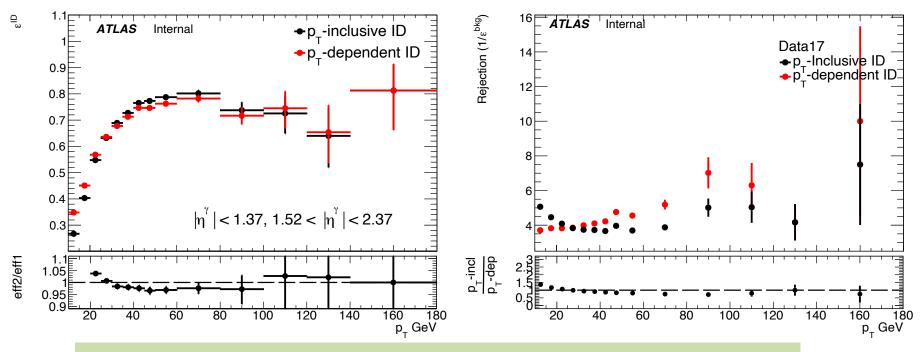
Overlap removal: remove photons in a cone size < 0.3 of <u>each one in the di-lepton pair</u> to build Z candidate; remove jets in a cone size < 0.2 of other objects


- ~2% higher sig. eff. than removal with all leptons, helps to account for increased number of photon fakes

Z construction:

- Opposite charge lepton pair whose mass (m_{II}) is closest to Z mass
- m_{II} corrected by FSR correction and mass constraint
- 81.2-corrected mll-101.2 GeV

 ~3% higher signal sensitivity than 15GeV Z mass window

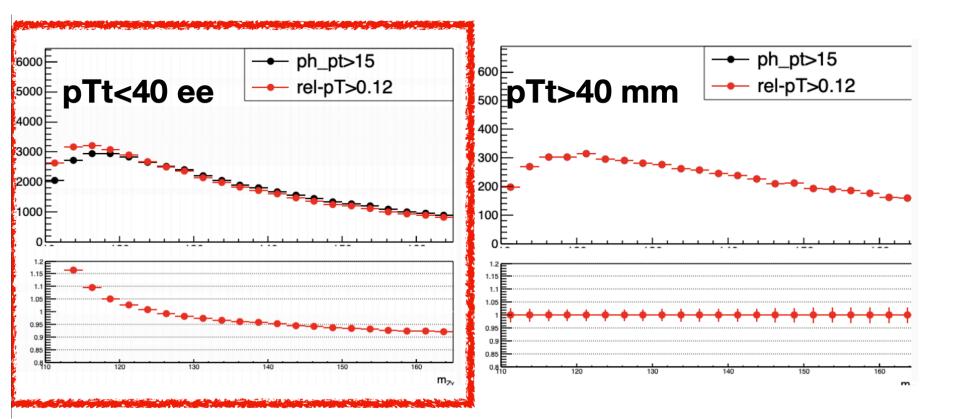

Photon final selections: photon pT / mZγ > 0.12, photon ID, Isolation **mZγ pre-selection:** 105-160 GeV

(b) $Z\gamma \rightarrow \mu\mu\gamma$

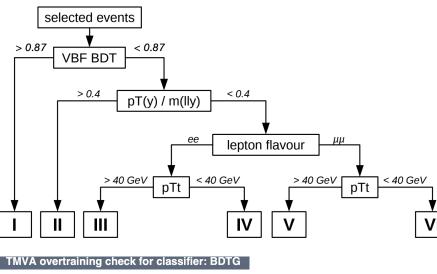
Event selection: optimisation

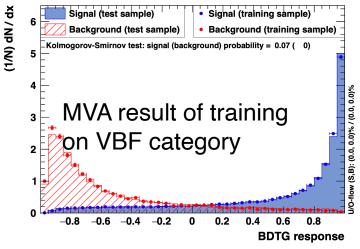
- New version of tight ID menu was produced following feedback from H->Zy group:
 - increased signal efficiency at 10 < pT < 25 GeV
 - increased signal efficiency in middle pT range -> closer to the pTinclusive dependency

~20% higher efficiency at low-pT, ~4% improved significance


Event selection: optimisation

Final photon pT cut: update to photon pT / Mlly > 0.12 (from pT > 15 GeV) - mainly for background study:


- Low pTt categories are influenced by a "shoulder" between 115-120 GeV with standard pT cut


- relpT>0.12 don't have a "shoulder" at 115-120GeV

- Equivalent to a photon pT >15GeV cut at mZy = 125GeV

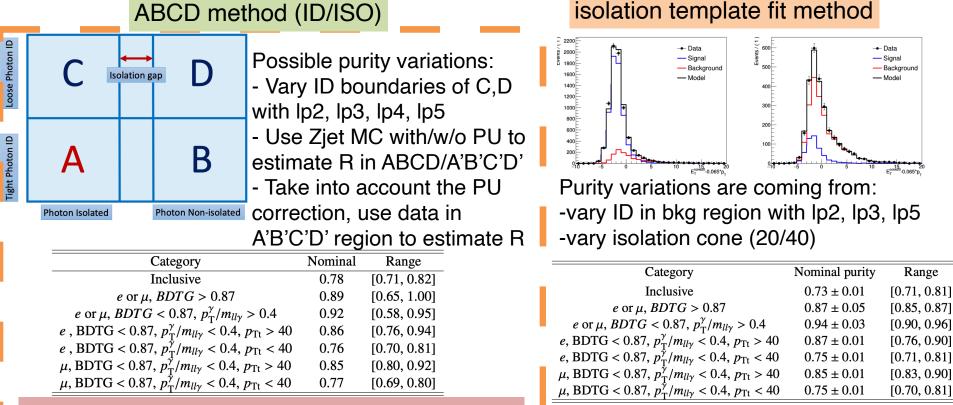
Categorisation

Categorisation is used to enhance the total sensitivity of the analysis Different categorisation strategies were tried:

I: VBF category optimised with MVA method + 5 cut-based categories II: VBF + ggF categorization with MVA method.

III: categorisation based on Njet bins and MVA method

Strategy I is used as nominal one with provided highest sensitivity and clearly understood background shape distribution


• 7 variables: $\Delta \Phi_{Z,\gamma}$, $\Delta \eta_{j,j}$, $\Delta R_{\gamma or Z,j}^{min}$, m_{jj} , p_{Tt} , η^{Zepp} , $\Delta \Phi_{Z\gamma,jj}$

	~	- 11	101-11	j	
Category	Events	<i>S</i> ₆₈	w ₆₈ [GeV]	$S_{68}/B_{68} [10^{-2}]$	$S_{68}/\sqrt{S_{68}+B_{68}}$
VBF-enriched	174	2.7	3.7	12.2	0.54
High relative $p_{\rm T}$	2883	7.6	3.7	6.6	0.68
High <i>p</i> _{Tt} ee	5289	9.9	3.8	2.2	0.46
Low $p_{\mathrm{T}t} \ ee$	55092	34.5	4.1	0.5	0.43
High $p_{\mathrm{T}t} \ \mu\mu$	6606	12.0	3.9	2.0	0.48
Low $p_{\mathrm{T}t} \ \mu\mu$	73003	43.5	4.0	0.5	0.47
Inclusive	143047	110.2	4.0	0.7	0.85

- Background yield is estimated with Zy MC + data-driven Zjet
- The sensitivity is estimated in the mass region covering 68% signal

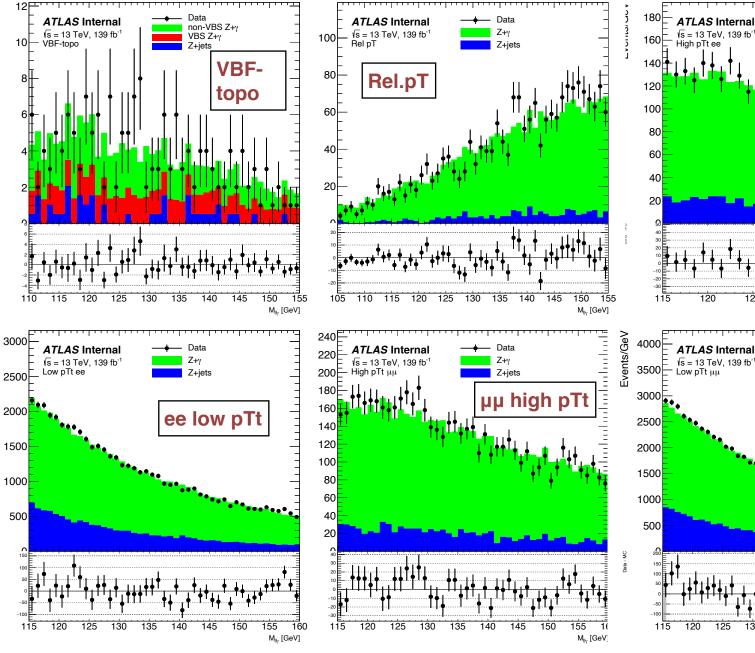
Background composition

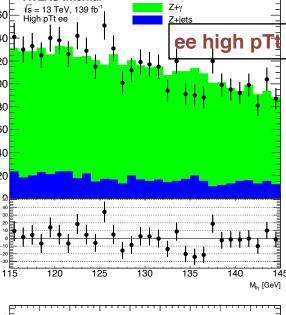
The dominant background components: SM $Z\gamma$ (irreducible) and Zjets (reducible) 2 different data-driven methods for the background decomposition:

ABCD method is used as nominal method

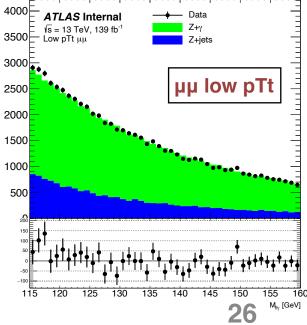
- Considered purity variation impacts on the background modelling (little effect)

- We are taking the envelope of the variation ranges from both the 2D-sideband and the template-fit methods as the uncertainty of the purity in each category


Mass spectrum

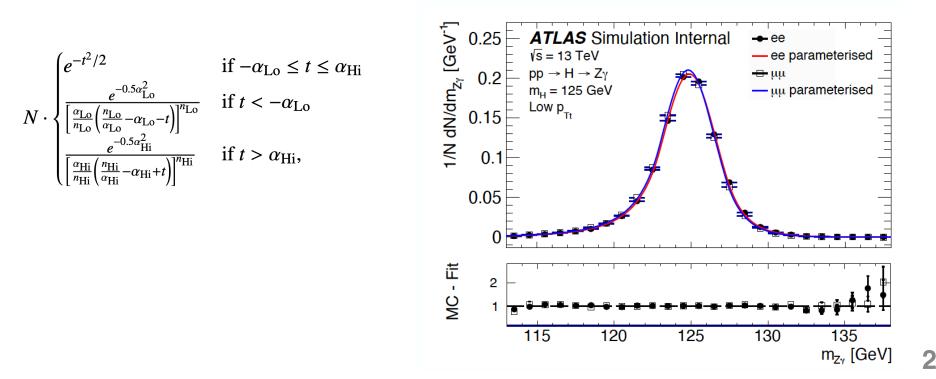

Events/GeV

Data - MC


Events/GeV

Data - MC

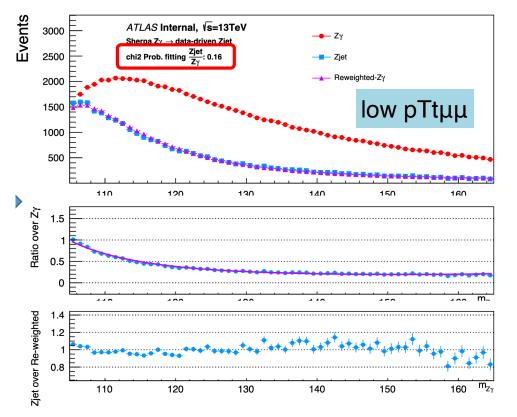
Data


Signal modeling

Signal shape:

- individual fit at the 125 GeV in each category on the Higgs MC shape, with **Double Sided Crystal Ball (DSCB)**, shift the mass point to 125.09 GeV

Signal efficiency:


- from Higgs MC (VBF, WpH, WmH, ZH, ttH).

Bkg modelling: Zy reweighing to Zjets

The procedure is done in order to get smooth Zjets mass shape:

- -Fast-sim samples are used to replace Zjets component
- -Define yield in each mass bin BZ_Y, BZjets for Z_Y, Zjets mass distributions -Get the ratio R
- -Fit R vs mass by FK1 function $f_{k=1;d=1/3}(x; b, d, a_0, a_1) = (1 x^{1/3})^b x^{a_0 + a_1 log(x)}$
- -Reweight Z_Y samples by R*BZ_Y to replace Zjets component

The purity is applied and later $Z\gamma+Zjets$ is normalised to data It is possible to measure spurious signals in each category

Background function and its uncertainty

A loose spurious signal bias test

Fit range optimization: Lower bound -110, 115, 120; Higher

bound - 140, 145, 150, 155, 160

The Fit range optimisation bring ~15% higher significance than fixed fit range of 115-150 GeV

Scan range: 123-129 GeV

Criteria : $S/\delta S < 50\% \chi 2$ prob. > 1% - depend on the MC statistic we can use, which bring acceptable Bkg Un. comparing to the the

Stat. Un.Both Fit range and Functions are decided by the significance while fittingSM expected Asimov data, and only with spurious signal uncertainty

	varying fit range, 0.25 GeV bin, 139.0/fb						
Event category	Function	Asimov sig.	$P(\chi^2)$	$\frac{S}{\delta S}$	max S	Fit Range	
VBF-topo_BDTG	Pow2	0.51	0.602	24.3 %	1.5	110-155	
high_rel_pt	ExpPoly2	0.60	0.265	-47.5 %	-7.3	105-155	
high_pTt_ee	Bern2	0.37	0.964	-28.1 %	-10.4	115-145	
low_pTt_ee	ExpPoly2	0.38	0.372	-21.4 %	-28.2	115-160	
high_pTt_µµ	Bern3	0.36	0.692	49.6 %	21.4	115-160	
low_pTt_µµ	Bern3	0.39	0.816	-25 %	-38.7	115-160	
		Comb.=1.09				29	

Systematics: experimental sources

Spurious signal has impact on obs. μ of ~15%, others have impact < 3%

- Comparing to Statistical uncertainty impact of ~43%

Divided to the impacts on signal efficiency (object selections), signal shape (DSCB) mean and resolution, in additional with background uncertainty (spurious signal)

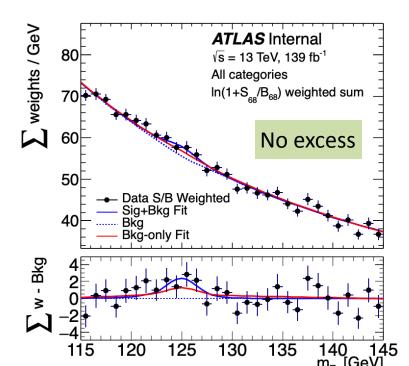
	-	Jet resolution	0.0–15	
Sources	$H \rightarrow Z\gamma$	Jet pile-up	0.0–7.5	
Luminosity [%]		Jet flavor	0.0–11	
Luminosity 1.7		Signal modelling on σ_{CB} [%]		
Signal efficiency [%]	Electron and photon energy resolution	0.5–3.4	
Modelling of pile-up interactions	0.01-0.2	Muon ID resolution	0.0–1.2	
Photon identification efficiency	0.8 - 1.8	Muon MS resolution	0.0–3.4	
Photon isolation efficiency	0.7–1.9	Signal modelling on μ_{CB} [%]		
Electron identification efficiency	0.0–2.3	Electron and photon energy scale	0.09–0.15	
Electron isolation efficiency	0.0-0.1	Muon momentum scale	0.0-0.03	
Electron reconstruction efficiency	0.0–0.5	Higgs boson mass measurement	0.19	
Electron trigger efficiency	0.0-0.1	Background modelling [number of spur	ious signal events]	
Muon selection efficiency	0.0–0.6	Spurious signal	1.5–39	
Muon trigger efficiency	0.0–1.6			
Jet energy scale,	0.0–3.5		00	

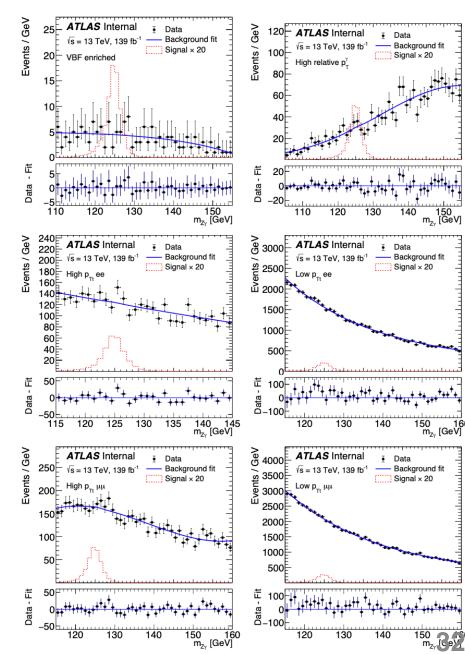
Systematics: theoretical sources

QCD scale and Br has larger impact of 6% on the observed $\boldsymbol{\mu}$

Divided to the impacts on total efficiency and category acceptance **Yield uncertainty**: QCD-scale, PDF, Branching ratio, underlying event (MPI-off)

Category acceptance:


- Modeling on photon pT / $mZ\gamma$
- Modeling on pTt in ee/µµ channels
- Modeling on the VBF BDT score


Sources					
Total cross-section and efficiency [%]					
ggF Underlying event	1.3				
perturbative order	4.7–9.6				
PDF and $\alpha_{\rm s}$	1.8-2.8				
$B(H \rightarrow Z\gamma)$	5.7				
Total (total cross-section and efficiency)	7.5–11				
Category acceptance [%]					
ggF Underlying event	0.1–11				
ggF H $p_{\rm T}$ perturbative order	0.3–0.4				
ggF in VBF-enriched category	34				
ggF in high relative p_T^{γ}	17				
ggF in other categories	6.7–14				
Other production modes	1.0–15				
PDF and $\alpha_{\rm s}$	0.4–3.5				
Total (category acceptance)	11–37				

Results

Limits on μ at 95% CL: Obs.: μ < 3.6 Exp: μ < 1.7 (2.6) assuming no (SM) H→Zγ

BR(H→Zγ) < 0.55% at 95% CL σ∗BR < 305 fb at 95% CL

Conclusion

Re-optimized full Run2 $H \rightarrow Z\gamma$ search is performed, where Z is decaying into $e^-e^+/\mu^-\mu^+$

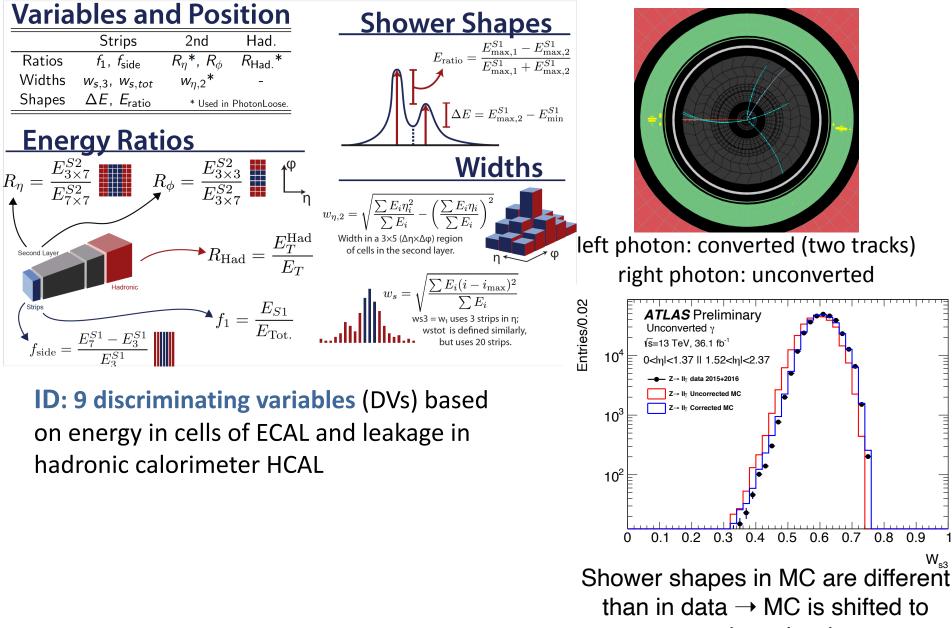
Several improvements on event selection, categorisation and background model bring higher significance than previous strategies **No evident deviation from background only assumption, limits set on signal strength, σ*Br and Br (branching ratio) with SM cross-section assumption**

Results are compatible with expectation.

Statistical uncertainty is still driving the total uncertainty, where the leading systematic uncertainties are from background shapes and theoretical sources

Personal contribution & thesis

Personal contribution to the analysis:


- event selection check & optimisation
- one of few categorisation strategy optimisation
- one of two bkg estimation methods
- signal modeling
- theoretical uncertainties (underlying event, modeling on the VBF BDT score)

Thesis progress:

- Advisors:
 - Nicolo de Groot (Prof., Radboud university)
 - Anatoli Romaniouk (Prof., MEPhI)
- Time scale:
 - ~3 months to finish the draft

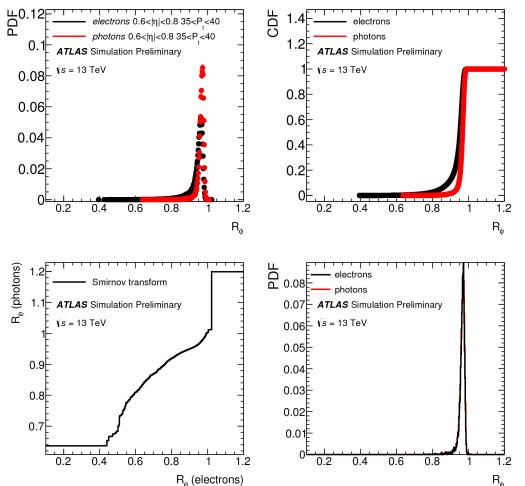
Backup Slides

Photon reconstruction and identification

reproduce the data 36

Photon discriminating variables

Category	Description	Name	loose	tight
Acceptance	$ \eta < 2.37$, with $1.37 < \eta < 1.52$ excluded	_	~	\checkmark
Hadronic leakage	Ratio of $E_{\rm T}$ in the first sampling layer of the hadronic calorimeter to $E_{\rm T}$ of the EM cluster (used over the range $ \eta < 0.8$ or $ \eta > 1.37$)	R_{had_1}	~	√
	Ratio of $E_{\rm T}$ in the hadronic calorimeter to $E_{\rm T}$ of the EM cluster (used over the range $0.8 < \eta < 1.37$)	R _{had}	~	√
EM Middle layer	Ratio of $3 \times 7 \eta \times \phi$ to 7×7 cell energies	R_η	1	\checkmark
	Lateral width of the shower	w_{η_2}	~	\checkmark
	Ratio of $3 \times 3 \eta \times \phi$ to 3×7 cell energies	R_{ϕ}		\checkmark
EM Strip layer	Shower width calculated from three strips around the strip with maximum energy deposit	<i>w</i> _{s3}		√
	Total lateral shower width	$w_{s tot}$		\checkmark
	Energy outside the core of the three central strips but within seven strips divided by energy within the three central strips	$F_{\rm side}$		√
	Difference between the energy associated with the second maximum in the strip layer and the energy re- constructed in the strip with the minimum value found between the first and second maxima	ΔΕ		~
	Ratio of the energy difference associated with the largest and second largest energy deposits to the sum of these energies	$E_{ m ratio}$		√


Table 1: Discriminating variables used for loose and tight photon identification.

Photon ID: Electron extrapolation method

- Shower shape distributions of electrons and photons γ are similar due to similar interactions of photons and electrons in the detector
- Select a pure sample of electrons from Z decays using a tag-andprobe method and transform their shower shape distributions such that the resulting object has photon properties:

$$s' = \mathrm{CDF}_{\gamma}^{-1}(\mathrm{CDF}_{\mathrm{e}}(s))$$

- Typical E_T of electrons from Z decays of order m_Z/2 -> measurement in range:
 - E_T in [25; 150] GeV

Photon ID: Matrix method

- Sample of inclusive photons collected with a single-photon trigger
- Large kinematic range: ET in [25; 1500] GeV
- ID efficiency can be computed by employing an additional discriminating variable: track isolation (assumed uncorrelated with shower shape variables) which is applied before and after ID cuts

$$\varepsilon_{\rm ID} = \frac{N_{\rm ID}^S}{N^S}$$
$$\hat{N}_{\rm ID} = \hat{\varepsilon}_{\rm ID}^S \cdot N_{\rm ID}^S + \hat{\varepsilon}_{\rm ID}^B \cdot N_{\rm ID}^B$$
$$\hat{N} = \hat{\varepsilon}^S \cdot N^S + \hat{\varepsilon}^B \cdot N^B$$
$$\underbrace{\sum_{\rm ID} = \frac{\hat{\varepsilon}_{\rm ID} - \hat{\varepsilon}_{\rm ID}^B}{\hat{\varepsilon}_{\rm ID}^S - \hat{\varepsilon}_{\rm ID}^B} \cdot N_{\rm ID}}{\hat{\varepsilon}_{\rm S}^S - \hat{\varepsilon}^B} \cdot N$$

Track-isolation efficiencies are obtained:

- from MC for signal (photons)
- from data for background, making use of low correlation between strip layer variables and track isolation

Framework, samples and preselection Where to find:

Analysis package is based on EGamma ZllgAnalysis - git

eos ntuples:

/eos/atlas/atlascerngroupdisk/perf-egamma/photonID/NTUP_ZLLG/ Contains: data15/16/17/18, MC15/16

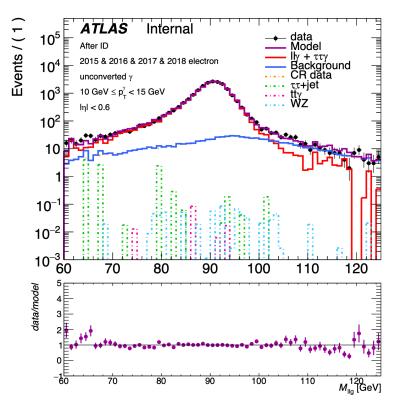
Samples:

- <u>MC</u>: MC16a/d/e Zeeγ, Zmumuγ (Sherpa, PowhegPythia), EGAM3/4
 - <u>Data</u>: 2015-2018 (~140 fb-1), EGAM3/4

Preselection:

<u>Leptons</u>: Et(el,mu) > 10 GeV, $|\eta_{el}| < 2.47$, $|\eta_{mu}| < 2.7$, Loose isolation

<u>Photons</u>: Et > 10 GeV, Loose OR Tight ID, deltaR(el/mu, γ) > 0.4, $|\eta| < 2.37$


Event selection: 40 < Mll < 83 GeV; 80 < Mllγ < 100 GeV, trigger matching

Methods of background estimation

Purity estimation with a mass fit method (Zihang) - [details]

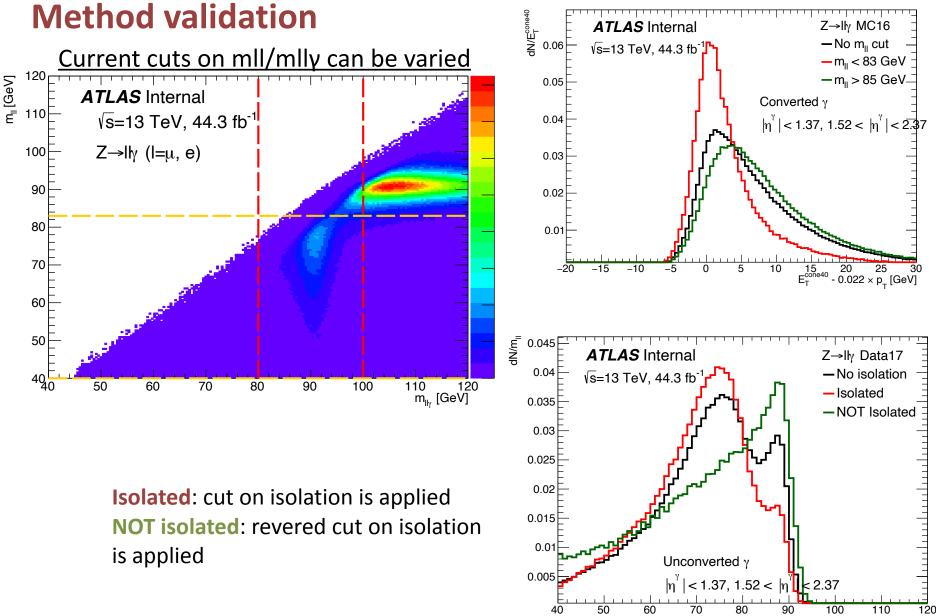
A template fit to data for pT range [10, 35] GeV; efficiencies for higher bins are obtained by counting.

$$n_{sig} = N_{sig} \times f_{sig}$$

$$n_{bkg^{i}} = N_{bkg^{i}} \times f_{bkg^{i}} \quad (i = 1, 2, 3, 4)$$

$$n_{total} = n_{sig} + \sum_{i} n_{bkg^{i}}$$

$$\sigma_{n_{sig}}^{2} = N_{sig}^{2} \times \sigma_{f_{sig}}^{2} + f_{sig}^{2} \times \sigma_{N_{sig}}^{2}$$

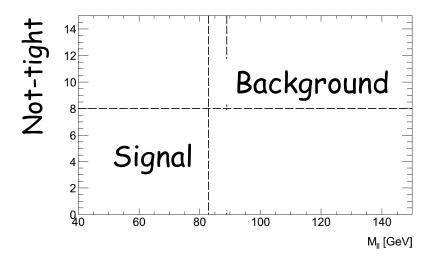

$$\sigma_{n_{bkg^{i}}}^{2} = N_{bkg^{i}}^{2} \times \sigma_{f_{bkg^{i}}}^{2} + f_{bkg^{i}}^{2} \times \sigma_{N_{bkg^{i}}}^{2}$$

$$\sigma_{total}^{2} = \sigma_{n_{sig}}^{2} + \sum_{i} \sigma_{n_{bkg^{i}}}^{2}$$

$$P = \frac{n_{sig}}{n_{sig} + \sum_{i} n_{bkg^{i}}}$$

$$\sigma_{P}^{2} = \frac{\sigma_{n_{sig}}^{2}}{n_{total}^{2}} + \frac{n_{sig}^{2} \times \sigma_{total}}{n_{total}^{4}}$$

2d sideband method



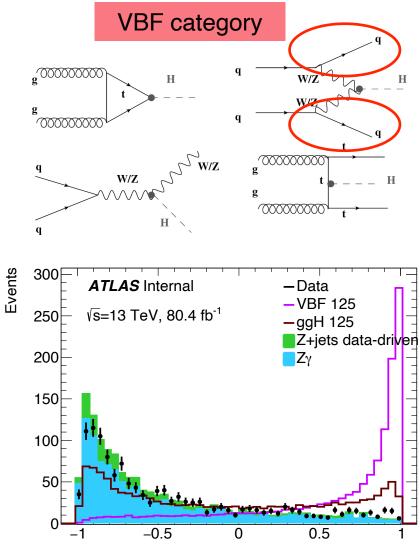
m, [GeV]

Isolation: Methods of background estimation

2d sideband method

- <u>Use of loose prime photons</u>: bits 17, 19, 20 and 21 are removed (tight-4 – less correlated with the isolation)
- Reversing Mll cut: for Mll > 85 GeV
 almost all photons should be jets->γ
- N_{bkg} can be estimated by normalizing control bkg shape to the tail of signal (tight) distribution

Method allows to estimate background contamination up to ~50 GeV


Used for isolation only

H->Zy analysis chain

Variables used in MVA training:

$\Delta \Phi_{Z,\gamma}$	Azimuthal angle between di-lepton system and photon	
$\Delta \eta_{jj}$	Pseudo-rapidity separation of dijet	
$\Delta R^{min}_{\gamma or Z, j}$	Minimum ΔR between one object of the Zgamma	
, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	and jets	
m_{jj}	Invariant mass of dijet	
<i>p</i> _{Tt}	Zgamma $p_{\rm T}$ projected perpendicular to the Zgamma thrust axis	
$\eta^{Zeppenfeld}$	$ \eta_{Z\gamma} - 0.5 * (\eta_{j1} + \eta_{j2}) $	
$\Delta \Phi_{Z\gamma,jj}$	Azimuthal angle between Zgamma and dijet system	

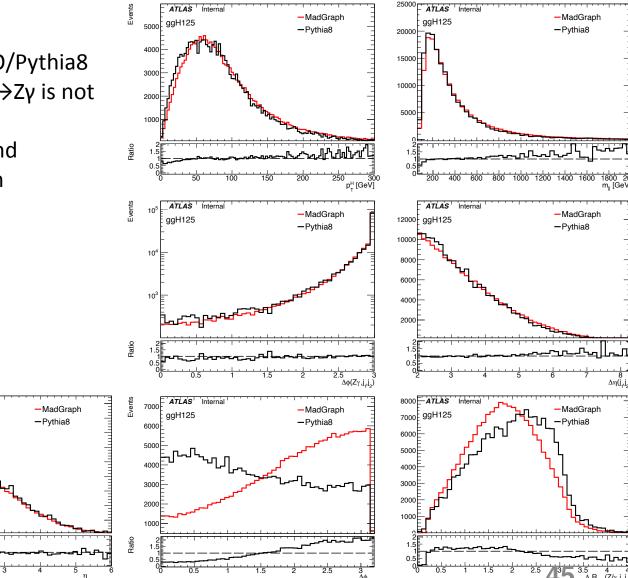
$$p_{\mathrm{T}t} = 2 \frac{|p_x^Z p_y^\gamma - p_x^\gamma p_y^Z|}{p_{\mathrm{T}}^{Z\gamma}}$$

BDT output

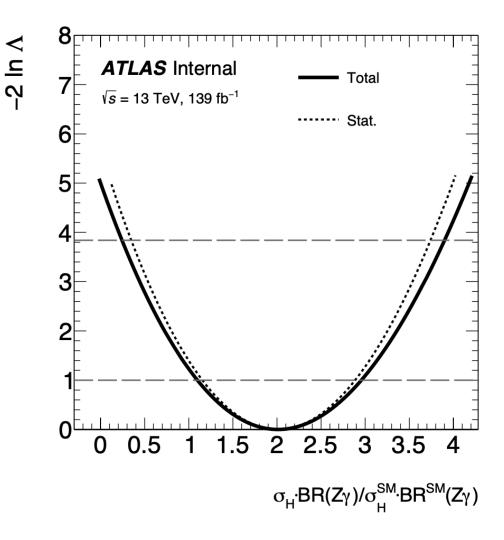
Systematics: theoretical sources

Example: modelling on the VBF BDT score

Delivered from MG5_aMC@NLO/Pythia8 sample using $H \rightarrow \gamma\gamma$ events ($H \rightarrow Z\gamma$ is not available) at evgen/truth level - difference between nominal and alternative sample is taken as an uncertainty

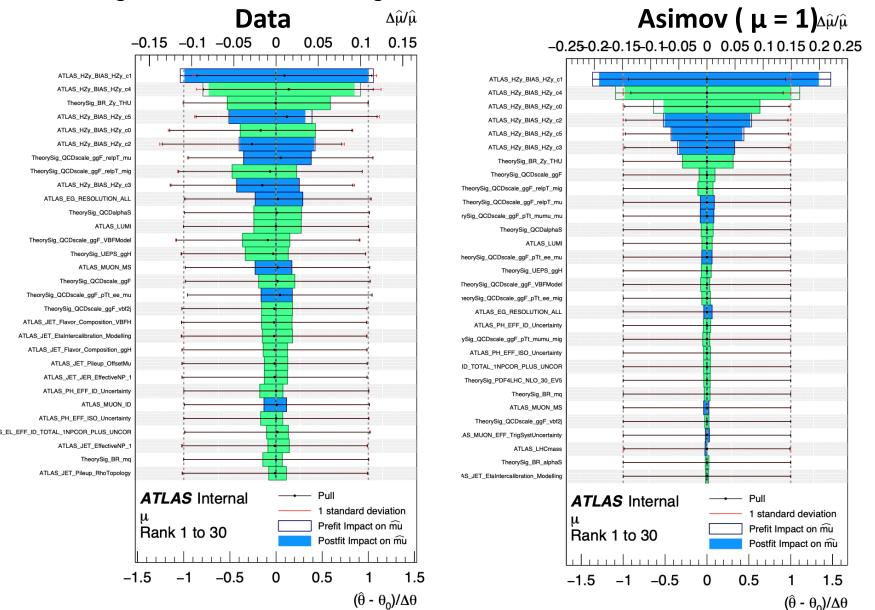

9000

8000

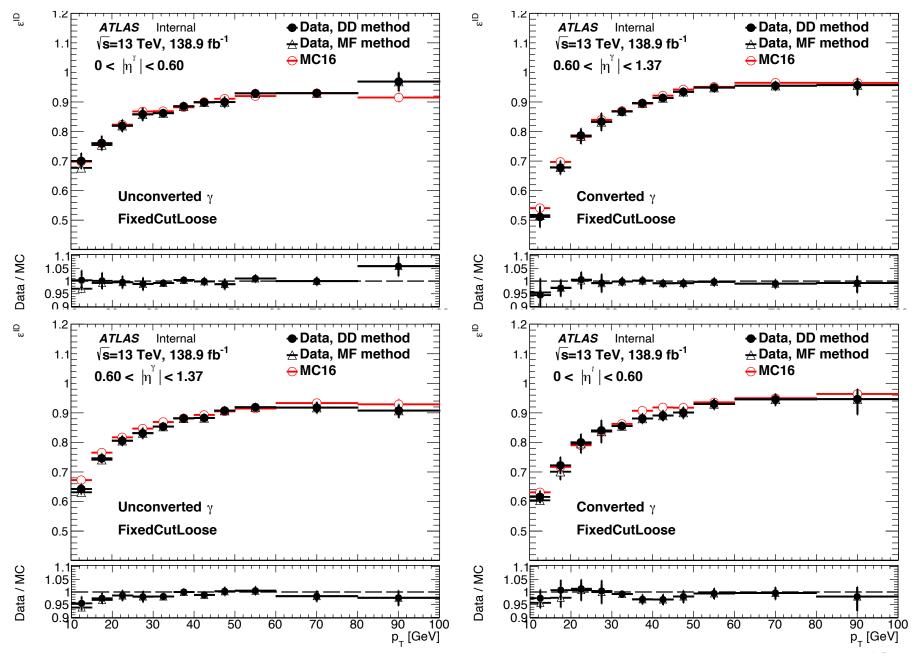

2000

Ratio

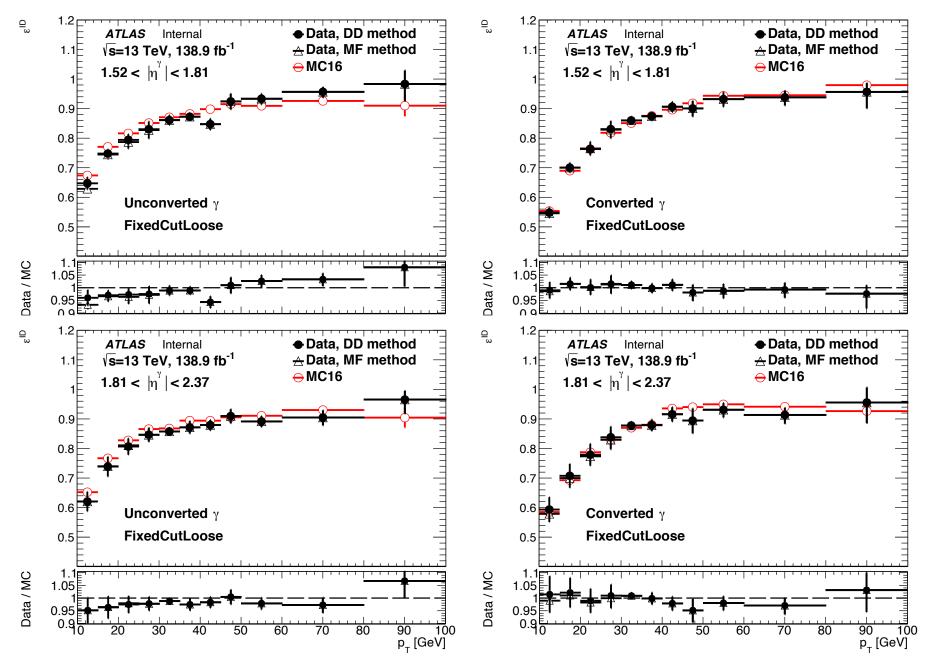
aaH12


Results

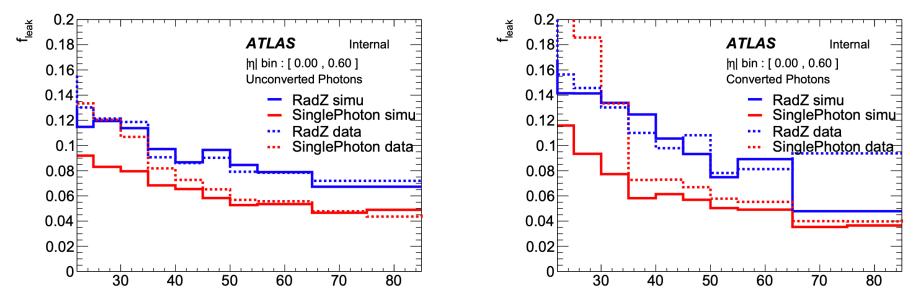
Category	μ	Significance
VBF-topo	$0.5^{+1.9}_{-1.7} (1.0^{+2.0}_{-1.6})$	0.3 (0.6)
Rel. pT	$1.6^{+1.7}_{-1.6} (1.0^{+1.7}_{-1.6})$	1.0 (0.6)
High pTt ee	$4.7^{+3.0}_{-2.7} (1.0^{+2.7}_{-2.6})$	1.7 (0.4)
Low pTt ee	$3.9^{+\overline{2.8}}_{-2.7} (1.0^{+\overline{2.7}}_{-2.6})$	1.5 (0.4)
High pTt $\mu\mu$	$2.9^{+3.0}_{-2.8} (1.0^{+2.8}_{-2.7})$	1.0 (0.4)
Low pTt $\mu\mu$	$0.8^{+2.6}_{-2.6} (1.0^{+2.6}_{-2.5})$	0.3 (0.4)
Combined	$2.0^{+1.0}_{-0.9} \ (1.0^{+0.9}_{-0.9})$	2.2 (1.2)


NP ranking

The changed orders are due to 2x significance in observed data



47


Photon ID efficiency vs pT

Photon ID efficiency vs pT

Photon iso leakage

similar behaviour in all eta bins

Leakage fraction obtained from MC:

 $f_{leak,MC} = \frac{loose'4_{MC}}{tight_{MC} + loose'4_{MC}}$

Obtained directly from MC for radZ and SinglePhotons Obtained from the fits on data for SinglePhotons, directly from data for radZ