ПРОВЕРКА МЕТОДА ОЦЕНКИ ЧАСТОТЫ НЕВЕРНОЙ ИДЕНТИФИКАЦИИ ЭЛЕКТРОНА КАК ФОТОНА ДЛЯ ДАННЫХ ПРОТОН-ПРОТОННЫХ СТОЛКНОВЕНИЙ В ЭКСПЕРИМЕНТЕ ATLAS

Зубов Д.В.

нияу мифи

Научный руководитель: Солдатов Е.Ю.

Консультант: Курова А.С.

Москва, 2020

イロト 不得 とくき とくき とうき

Введение

Группой ATLAS НИЯУ МИФИ изучается процесс $Z(\rightarrow \nu \bar{\nu})\gamma jj$ Отклонение от предсказанного СМ сечения в этом процессе будет указывать на наличие "новой физики"за рамками СМ. Сигнатурой данного процесса является фотон с большим поперечным импульсом и большим E_{τ}^{miss} . Схожую сигнатуру будут иметь процессы, в которых электрон неверно идентифицируется как фотон.

Метод оценки частоты неверной идентификации электрона как фотона

Оценка частоты неверной идентификации вычислялась по следующим образом:

$$\nu_{e \to \gamma} = \frac{N_{e\gamma}}{N_{ee}}$$

 $N_{e\gamma}, N_{ee}$ - число пар с инвариантной массой от 80 до 100 ГэВ.

Отборы событий: $PT_{min}(\gamma \to e\gamma) = 150\Gamma$ эВ; $PT_{min}(e_{lead} \to ee) = 150\Gamma$ эВ; $PT_{min}(e_{sublead}) = 25\Gamma$ эВ; $1.37 \le |\eta| \le 1.52, |\eta| \le 2.37$

Зубов Д.В.

Проверка метода оценки $u_{e ightarrow\gamma}$

- Целью работы в этом семестре являлась проверка описанного выше метода оценки частоты неверной идентификации электрона как фотона.
- Для проверки метода с помощью программного пакета MadGraph5 и пакета симуляции детектора Delphes3 произведена Монте-Карло симуляция процесса Z(→ eē)j;
- Проверка метода состоит в сравнении ν_{e→γ}, полученной описанным выше методом и «истинной» частоты.

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆三 ▶ ● ● ● ●

Измерение частоты неверной идентификации в Монте Карло симуляции.

$$F_{fit}(x) = POL3(x) + Voigtian(x)$$

Измеренная частота неверной идентификации в Монте Карло симуляции.

$$u_{e \to \gamma} = 2.32 \pm 0.04\%.$$

Описание метода оценки «истинной» $u_{e
ightarrow \gamma}$

Оценка «истинной» $\nu_{e \to \gamma}$ основана на сопоставлении реконструированного с электроном до адронизации и симуляции детектора, находящегося внутри конуса $\Delta R = 0.1$ вокруг этого фотона.

Для оценки вычислялось отношение событий с парами $e\gamma$ к событиям с парами $e\bar{e}$. Частицы в парах имеют ограничения на PT и η , такие же, что и в описанном выше методе и не имеют ограничений на инвариантную массу.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

$$\nu_{e \to \gamma} = \frac{N_{e\gamma}}{N_{ee}}$$

Таким образом получена «истинная» частота неверной идентификации в Монте-Карло:

 $\nu_{e \rightarrow \gamma} = 3.11 \pm 0.03\%$

Анализ результатов

Различие частоты неверной идентификации, полученной двумя разными методами в Монте-Карло симуляции, составляет более 25%: $\nu_{e \to \gamma} = 2.32 \pm 0.04\%$ - измеренная частота.

 $u_{e o \gamma} = 3.11 \pm 0.03\%$ - "истинная" частота.

В событиях фонового

"бампа"реконструируемый фотон имеет значительно более низкий поперечный импульс в сравнении с соответствующим ему электроном на партонном уровне.

Распределения разности энергии фотона на реко-уровне и соответствующего электрона на партонном уровне для всех фотонов участвующих в оценке $\nu_{e \rightarrow \gamma}$ (верхнее) и для фотонов из пар, инвариантная масса которых в пределе (65-80) ГэВ, что соответствует "бампу" (нижнее).

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Эволюция неверно идентифицируемого электрона

Parton (E, PT, η, ϕ)	Particle PID : (E, PT, η, ϕ)	Detector (E, PT, η, ϕ)	
(629.743, 232.454, 1.654, -1.369)	-11:(625, 230.3, 1.656, -1.365)	(321.402, 117.928, 1.660, -1.369)	
	-11:(228, 83.98, 1.656, -1.365)		
	22:(397, 146.3, 1.656, -1.365)		
(632.084, 212.922, -1.752, -1.807)	(583, 203.6, -1.713, -1.739)	(368.926, 128.934, -1.712, -1.736)	
	22:(2.16, 0.700, -1.789, -1.755)		
	22:(0.98, 0.333, -1.739, -1.667)		
(264.189, 229.483, 0.543, 1.826)	(269, 235, 0.532, 1.794)	(166.294, 145.276, 0.532, 1.784)	
(295.504, 283.834, -0.286, -2.078)	-11:(292, 281, -0.2723, -2.086)	(118.746, 114.731, -0.264, -2.087)	
	-11:(174, 168, -0.272, -2.086)		
	22:(118, 114, -0.272, -2.086)		
(514.313, 168.993, -1.778, -1.819)	11:(523, 179, -1.734, -1.800)	(334.183, 115.51, -1.724, -1.800)	
	11:(522, 179, -1.734, -1.800)		
	22:(0.068, 0.023, -1.734, -1.800)		

Как видно из таблицы происходит потеря энергии электроном посредством тормозного излучения. Причем на реко уровне регистрируется только фотон, электрон достаточного следа не оставляет.

(日)

Заключение

В работе осуществлялась проверка метода оценки неверной идентификации электрона как фотона. Была установлена неточность и необходимость доработки этого метода и метода проверки на полученном наборе данных. Была установлена причина неточности метода - наличие событий с тормозными фотонами.

В скором времени планируется развить методы вычитания этих фотонов и решить на вопрос о пропадающем электроне.

Оверлап струй

Оверлап электронов

Распределения по ДК электронами на партонном уровне и электроном и фотоном на реко уровне. Lead - электрон, соответствующий фотону на реко уровне, sublead - электрон, соответствующий электрону на реко уровне.

Δ R(sublead,γ)

Таблица соответствия

Parton (E, PT, η, ϕ)	Particle PID : (E, PT, η, ϕ)	Detector (E, PT, η, ϕ)
(629.743, 232.454, 1.654, -1.369)	-11:(625, 230.3, 1.656, -1.365)	(321.402, 117.928, 1.660, -1.369)
	-11:(228, 83.98, 1.656, -1.365)	
	22:(397, 146.3, 1.656, -1.365)	
(632.084, 212.922, -1.752, -1.807)	(583, 203.6, -1.713, -1.739)	(368.926, 128.934, -1.712, -1.736)
	22:(2.16, 0.700, -1.789, -1.755)	
	22:(0.98, 0.333, -1.739, -1.667)	
(264.189, 229.483, 0.543, 1.826)	(269, 235, 0.532, 1.794)	(166.294, 145.276, 0.532, 1.784)
(295.504, 283.834, -0.286, -2.078)	-11:(292, 281, -0.2723, -2.086)	(118.746, 114.731, -0.264, -2.087)
	-11:(174, 168, -0.272, -2.086)	
	22:(118, 114, -0.272, -2.086)	
(514.313, 168.993, -1.778, -1.819)	11:(523, 179, -1.734, -1.800)	(334.183, 115.51, -1.724, -1.800)
	11:(522, 179, -1.734, -1.800)	
	22:(0.068, 0.023, -1.734, -1.800)	

В таблице представлены 4-импульс фотона на реко уровне(третий столбец), электрон на партонном уровне соответствующий(ΔR) этому электрону(первый столбец) и промежуточные частицы на партикл уровне. Как видно из второго столбца, а особенно из 4 строки ответственен за недостачу энергию фотона на реко уровне ФСР-фотон излученный на партикл уровне. Стоит отметить, что не во всех событиях ФСР фотон очевиден(например строка). Возможно излучение фотона за пределы конуса $\Delta R = 0.1$

(日)

Регистрация элекроноа и жесткого фотона внутри одного конуса

Распределения по ΔR между элекроном на реко уровне и фотоном на реко уровне в событиях с $N_e > 0, N_\gamma > 0, PT_e > 20$ и изолированным фотоном для различных минимальных значений PT_{γ} .

Здесь учтены события с двумя электронами и одним фотоном. Как видно из распределений, при отборе жестких фотонов, нет событий с близко летящими элекроном и фотоном.

イロト イボト イヨト イヨト

Уменьшение размера конуса

Распределения по инвариантной массе электрона на реко уровне и фотона на реко уровне для различных значений ΔR между фотоном на реко уровне и соответсвующим ему электроном на ген уровне. Как видно, уменьшение параметра ΔR не ведет к улучшению отбора фотонов - бамп "плохих" фотонов не уменьшился относительно пика.

★ Ξ →

Отборы на генераторном уровне(Прописывались в runcard)

lhapdf = pdlabel
260000 = lhaid
20.0 = ptj ! minimum pt for the jets
25.0 = ptl ! minimum pt for the charged leptons
0.1 = drll ! min distance between leptons
0.3 = drjl ! min distance between jet and lepton
150.0 = ptl1min ! minimum pt for the leading lepton in pt
25.0 = ptl2min ! minimum pt for the second lepton in pt

Отборы для методов tag-n-probe и ΔR

Переменная	tag-n-probe		ΔR	
Переменная	Пара ее	Пара $e\gamma$	Пара ее	Пара $e\gamma$
PT _{min} (tag)	25			
PT _{min} (probe)*	150			
η (both particles in pair)	$1.37 \leq \eta \leq 1.52, \eta \leq 2.37$			
Phlsomax * *	-	0.05	-	0.05
Num e	2	1	2	1
Num γ	0	1	0	1
Pair inv. mass	80-100	80-100	-	-
ΔR_{max}	-	-	0.1	0.1

* - В парах ее probe - электрон, $e\gamma$ - фотон. ** - Phlso = $\frac{\sum_{i \neq p}^{\Delta R \le 0.2, PT_{min}(i)=0.5} PT(i)}{PT(p)}$ - приближение к изоляционному отбору $PT^{cone20}/PT \le 0.05$

Форма распределения для переменной фотонной изоляции

・ 一日 ・ ・ 日 ・ ・

ъ

Спектр изоляции фотона

Сравнение распределений для переменной изоляции фотонов. Верхнее для всех фотонов, прошедших отборы для оценки частоты методом ΔR (слайд 12, кроме отбора на изоляцию).

Нижнее - с теми же отборами + события такие, что инвариантная масса электрона и фотона в событии в интервале (65, 80) ГэВ. Таким образом отбирались фотоны с энергией не соответствующей тому же электрону на партонном уровне.

Как видно, формы распределений похожи и нельзя говорить о том, что у фотонов из "бампа"изоляция отличается от изоляции фотонов из пика.

Image: A matrix

Сравнение инвариантной массы е и для различных значений изоляции

Сравнение распределений инвариантной массы электрона и фотона при $Phlso_{max} = 0.05$ верхняя картинка и $Phlso_{max} = 0.002$ нижняя. Как видно из распределений, более высокий порог на изолированность фотона не избавляет от "бампа а пропорционально уменшает количество событий в каждом бине. Форма распределения не изменилась.

イロト イボト イヨト イヨト

Сравнение распределений МЕТ

Сравнение распределений потерянной поперечной энергии в событиях со всеми фотонами на верхней картинке и в событиях с фотонами из "бампа" (аналогично слайду14). Как видно, форма распределений для всех фотонов и для фотнов из "бампа"аналогична, то есть нельзя говорить о различии потерянной энергии в бампе и пике.

Сравнение инвариантной массы е и для различных значений МЕТ

Сравнение распределений инвариантной массы электрона и фотона с ограничением на потерянную поперечную энергию $MET_{max} = 40$ Гэв вверху и $MET_{max} = 10$ ГэВ внизу.

Как видно из распределений, изменение порога на потерянную поперечную не избавляет от "бампа а пропорционально уменшает количество событий в каждом бине. Форма распределения не изменилась.

イロト イボト イヨト イヨト

Воигтиан

Оценка формы фона в распределении инвариантной массы еγ проводилась путем фитирования распределения суммой полинома третьей степени и Воигтиана, где Воигтиан есть свертка распределения Гасса и распределения Брейта-Вигнера:

$$F_{fit}(x) = POL3(x) + Voigtian(x)$$
(1)

$$Gauss(M, \sigma) \times BreitWigner(M, \Gamma) = Voigt(M, \Gamma, \sigma).$$
 (2)

Таким образом события в распределении от распада Z-бозона описывались Воигтианом, а фон полиномом третьей степени.

$$F_{fit} = p_4 + p_5 \cdot x + p_6 \cdot x^2 + p_7 \cdot x^3 + p_0 \cdot Voigt(M, \Gamma, \sigma),$$
(3)

Фитирование проводилось в интервалах (75-85) ГэВ и (95-105) ГэВ. При фитировании такие параметры Воигтиана как ширина распада Z-бозона Г, масса Z-бозона М, среднеквадратичное отклонение σ фиксировались: M = 91.2ГэВ - масса , $\Gamma = 0.084$ ГэВ[б], $\sigma = 1.79$ ГэВ. Параметр ρ_0 ответственный за высоты пика принимал значения в фиксированном интервале, таком чтобы при фитировании высота Воигтиана лежала в пределах 10% от высоты пика распределения. Фиксирования и ограничение принимаемых значений параметров необходимо для стабильного фитирования. Значение параметра σ оценивалось из ширины пика Z-бозона на полувысоте по формуле:

$$FWHM_{Voigt} \approx \frac{\Gamma}{2} + \sqrt{\frac{\Gamma^2}{4} + (2.35 \cdot \sigma)^2}.$$
(4)

Воигтиан

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

æ