МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ЯДЕРНЫЙ УНИВЕРСИТЕТ «МИФИ»

(НИЯУ «МИФИ»)

УДК 53.072

ОТЧЕТ

О НАУЧНО-ИССЛЕДОВАТЕЛЬСКОЙ РАБОТЕ

Разработка программ реконструкции нейтральных $\pi-$ мезонов для электромагнитного калориметра эксперимента MPD/NICA

Руководитель НИР,	
к.фм.н.	 Д.С. Блау
СНС НИЦ Курчатовский институт	
Студент	 А.А. Каюков

Москва 2020

Содержание

B	зедение	2			
1	Ускоритель NICA				
2	2 MPD				
3	3 ECal				
4	4 MpdRoot				
5	Реконструкция треков	7			
6	Наложение критериев	8			
	6.1 Критерий фотонной идентификации	8			
	6.2 Критерий на дисперсию кластера	10			
	6.3 Критерий на время пролета частицы	13			
7	Применение всех критериев одновременно	15			
8	Фитирование	16			
9	Э Результаты				
10	10 Заключение				
Cı	Список использованных источников 1				

Введение

Целью данной работы явлется разработка и оптимизация программ реконструкции нейтральных π – мезонов для электромагнитного калориметра ECaL.

Главное назначение электромагнитного калориметра – измерение энергии электронов и фотонов, рожденных в столкновениях тяжелых ионов. Благодаря высокому временному разрешению калориметр позволит получить хорошую чистоту электронного и фотонного спектров. Кроме того, детектор фотонов будет служить для измерения полного потока энергии, который в немалой степени отражает начальные условия в столкновениях тяжелых ионов на установке NICA. Первостепенной задачей калориметра ECAL в MPD является измерения спектров π^0 мезонов, рождающихся в больших количествах в ядро-ядерных столкновениях. Это позволит проверить предсказания КХД, а также дать возможность в дальнейшем измерить спектры и корреляции прямых фотонов. Текущей залачей являлается разработка критериев идентификации для улучшения сигнала по отношению к фону при измерениях спектров π^0 .

1 Ускоритель NICA

Целью проекта "Комплекс NICA" является создание экспериментальной базы мирового уровня для проведения фундаментальных исследований по ряду наиболее значимых вопросов современной физики высоких энергий и выполнения актуальных прикладных исследовательских работ.

Исследования на комплексе NICA охватывают широкий круг явлений в области структуры сильновзаимодействующей материи, проявляющихся в реакциях с участием тяжелых ионов, поляризованных адронов и легких ядер. Основными направлениями программы исследований являются[1]:

- Поиск и экспериментальное исследование фазовых переходов и критических явлений в сильновзаимодействующей ядерной материи при экстремальных барионных плотностях;
- Экспериментальное исследование спиновой структуры нуклона и легких ядер;
- Исследование поляризационных эффектов в столкновениях тяжелых ионов и малонуклонных системах;
- Исследование динамики реакций и изучение модификации свойств адронов в ядерной материи;
- Исследование структуры ядер на малых межнуклонных расстояниях, рождения странных гиперонов около порога и поиск гиперядер во взаимодействиях выведенных пучков Нуклоторона с фиксированными мишенями;
- Разработка теоретических моделей исследуемых процессов и теоретическое сопровождение экспериментов;

2 MPD

MPD(Multi Purpose Detector) разрабатывается как спектрометр 4π , способный регистрировать заряженные адроны, электроны и фотоны при столкновениях тяжелых ионов при высокой светимости в диапазоне энергий (4-11GeV) коллайдера NICA.[2] Для достижения этой цели детектор будет содержать точную трехмерную трековую систему(время-проекционную камеру) и систему идентификации частиц(PID), основанную на измерениях времени полета и калориметрии.

Рисунок 1 – Проект детектора MPD

3 ECal

Электромагнитный калориметр ECal(Electromagnetic Calorimeter)[3] является важным компонентом эксперимента MPD. Модуль электромагнитного калориметра состоит из 16 башен, которые склеены между собой. Геометрия каждого модуля зависит от местоположения Z-координаты модуля относительно точки, в которой сталкиваются пучки тяжелых ионов. Есть 8 типов модулей. Схематический вид детектроа ECaL и его составных частей показаны на рисунке 2. Каждая башня «шашлык» представляет собой "сэндвич"из сцинтиллятора и свинца, содержащий 220 плиток свинца (толщиной 0,3 мм каждая). Свинцовые плитки чередуются с 220 плитками из пластикового сцинтиллятора (толщиной 1,5 мм каждая). Общая толщина башни составляет около 42 см.

Рисунок 2 – Детектор ECaL(a), сектор ECaL(b) и базовый элемент детектора ECaL.(c)

4 MpdRoot

Програмная среда эксперимента MPD(MPDRoot) создается на базе объектно ориентированной оболочки FairRoot и является мощным инструментом для изучения свойств моделируемого детектора, разработки алгоритмов для реконструкции экспериментальных данных и их физического анализа.

В используемой оболочке сигнал отклика детектора моделируется пакетами программ виртуального Монте Карло, позволяющем использовать разные коды для транспорта частиц в среде детектора GEANT3, GEANT4 или Fluka без изменения кода пользователя. Одна и та же оболочка используется как для моделирования так и для последующего физического анализа данных.

Одной из особенностей оболочки явлется метод описания геометрии детектора. Ввод информации в этом методе осуществляется в формате геометрии Root. Введенные данные о геометрии детектора, его материалах и параметрах сохраняются затем в базе данных внутри MPDRoot.

Для реалистичного моделирования физических процессов в оболочке обеспечен ввод данных от различных Монте-Карло генераторов событий ядро-ядерных столкновений, таких как UrQMD и FastMC. Также в оболочке предусмотрен механизм, моделирующий наложение фоновых событий на исследуемое распределение.

5 Реконструкция треков

Реконструкция событий – это процесс интерпретации электронных сигналов, генерируемых детектором, для определения исходных частиц, которые прошли через них, их импульсов, направлений и первичной вершины события. Реконструкция событий состоит из следующих основных этапов:

- Реконструкция хитов в субдетекторов
- Реконструкция трека
- Поиск вершин
- Идентификация частиц

Общий подход к проблеме реконструкции трека частицы основан на методике фильтрации Калмана. Фильтр Калмана представляет собой набор математических уравнений, которые обеспечивают эффективное вычислительное (рекурсивное) решение метода наименьших квадратов.

Алгоритм начинается с отслеживания кандидатов в треки, для которых оцениваются вектора исходных параметров и ковариационные матрицы. Затем, каждый трек распространяется на некоторую поверхность(детектор или промежуточную точку). Новая ковариационная матрица может быть получена с использованием матрицы преобразования Якоби, то есть матрицы производных параметров распространяемого трека по текущим параметрам.

Первичная вершина находится путем экстраполяции всех первичных треков обратно в начало координат, и её разрешение определяется как среднеквадратическое значение распределения экстраполяции первичных треков в начале координат. Среднее значение этого распределения – позиция вершины.

6 Наложение критериев

6.1 Критерий фотонной идентификации

Для отбора нейтральных кластеров находились расстояния между реконструированными треками и кластерами в калориметре. За нейтральные кластеры принимались все кластеры, удовлетворяющие неравенству:

$$\frac{(d\varphi - \mu_{d\varphi})^2}{(2 \cdot \sigma_{d\varphi})^2} + \frac{(dz - \mu_{dz})^2}{(2 \cdot \sigma_{dz})^2} > 1,$$
(1)

где $d\varphi$ и dz – угол и расстояние между треком и кластером соответственно; $\mu_{d\varphi}, \ \mu_{dz}, \ \sigma_{d\varphi}$ и σ_{dz} – средние значения и стандартные отклонения распределений кластеров по этим величинам.

Рисунок 3 – Зависимость числа пар кластеров от dz

Рисунок 4 – Зависимость числа пар кластеров от $d\varphi$

Полученный критерий накладывался на кластеры и, после отбора пар кластеров, строилось распределение по двухфотонным инвариантным массам.

Matching cut, 2<pT<4 GeV/c

Рисунок 5 – Распределение по инвариантным массам $\gamma\gamma$ при дейтсвии критерия фотонной идентификации

6.2 Критерий на дисперсию кластера

Одним из параметров, характеризующих форму кластера, является форма поверхности пересечения конуса, содержащего ливень, с передней плоскостью калориметра. Эта поверхность может быть выражена через ковариационную матрицу:

$$S = \begin{pmatrix} s_{xx} & s_{zx} \\ s_{zx} & s_{zz} \end{pmatrix},\tag{2}$$

где

$$s_{xx} = \langle (x - \overline{x})^2 \rangle, \tag{3}$$

$$s_{xz} = \langle (x - \overline{x})(z - \overline{z}) \rangle, \qquad (4)$$

здесь \overline{x} и \overline{z} являются центрами кластеров, а треугольные скобки означают усреднение с логарифмическими весами. Диагонализация этой ковариационной матрицы определит величины главных осей поверхности ливня $(\lambda 1$ и $\lambda 2)$ как квадратный корень из собственных векторов ковариационной матрицы.

Рисунок 6 – Форма кластера

Построив распределения по $\lambda 1$ и $\lambda 2$, можно получить еще один критерий для нейтральных кластеров.

$$\frac{(\lambda_1 - \mu_{\lambda_1})^2}{(2 \cdot \sigma_{\lambda_1})^2} + \frac{(\lambda_2 - \mu_{\lambda_2})^2}{(2 \cdot \sigma_{\lambda_2})^2} < 1,$$
(5)

где средние значения и квадратные отклонения были получены из распределений кластеров по $\lambda 1$ и $\lambda 2$ для γ -квантов, родительской частицей которых является π^0 .[4]

Рисунок 7 — Распределение по λ_1 и λ_2

Распределение по двухфотонным инвариантным массам при наложении критерия представлено на рисунке 8.

Dispersion cut, 2<pT<4 GeV/c

Рисунок 8 – Распределение по инвариантным массам $\gamma\gamma$ при дейтсвии критерия на дисперсию кластера

6.3 Критерий на время пролета частицы

Массивные частицы от γ -квантов можно отличить по разнице между замеренным времени пролета частицы через детектор и ожидаемом времени пролета γ -кванта, вылетевшего из той же вершины.

$$\Delta t = t_{clu} - \frac{\Delta r}{c},\tag{6}$$

где t_{clu} – экспериментально измеренное время появления кластера; Δr – расстояние от кластера до вершины сопоставленного ему трека; с – скорость света. Из формулы видно, что массивные частицы будут иметь большую величину Δt , чем γ -кванты. Итоговым критерием стало:

$$\frac{(\Delta t_1 - \mu_{\Delta t_1})^2}{(2 \cdot \sigma_{\Delta t_1})^2} + \frac{(\Delta t_2 - \mu_{\Delta t_2})^2}{(2 \cdot \sigma_{\Delta t_2})^2} < 1,$$
(7)

где индексы 1 и 2 означают первый и второй кластер в паре.

Рисунок 9 – Распределение по Δt для всех кластеров

Рисунок 10 — Распределение по
 Δt для кластеров, родительской частицей которых являетс
я π^0

Распределение по двухфотонным инвариантным массам при наложении критерия представлено на Рисунке 11.

Time cut, 2<pT<4 GeV/c

Рисунок 11 — Распределение по инвариантным массам
 $\gamma\gamma$ при дейтсвии критерия на дисперсию кластера

7 Применение всех критериев одновременно

All cuts, 2<pT<4 GeV/c

Рисунок 12 – Распределение по инвариантным массам
 $\gamma\gamma$ при дейтсвии всех критериев

8 Фитирование

Полученные распределения инвариантных масс фитировались функцией:

$$F(x) = N(\mu, \sigma^2) + a \cdot x^2 + b \cdot x + c, \qquad (8)$$

где

- N(μ, σ²) функция Гаусса, параметрами которой являлись среднее значение, стандартное отклонение и нормировочный коэффициент. Данной функции сопостовляется пик, отвечающий массе π⁰
- $a \cdot x^2 + b \cdot x + c$ полином второй степени с параметрами a, b и c отвечающий за комбинаторный фон.

Inv. mass distribution

Рисунок 13 – Распределение по инвариантным массам $\gamma\gamma$ во всех случаях

9 Результаты

По результатам фитирования были получены такие величины как число событий в пике(S), число событий в фоне(Bg), эффективность(Eff), относительная величина сигнала к фону – $\frac{S}{S+Bg}$ и significance – $\frac{S}{\sqrt{Bg}}$.

	All	Matching	Dispersion	Time	All cuts
S	16938 ± 456	14258 ± 312	14560 ± 364	12142 ± 355	8638 ± 184
Bg	$122980{\pm}17$	61395 ± 13	74485 ± 14	68968 ± 13	22519 ± 8
S+Bg	67377 ± 1823	35789 ± 790	31347 ± 790	53831 ± 1584	14991 ± 325
S/(S+Bg)	≈0,25	≈0,40	≈0,46	≈0,23	≈0,58
Eff	1	0.67	0.69	0.73	0.36
S/sqrt(Bg)	≈48,3	≈57,5	≈53,3	≈46,2	≈57,6

Таблица 1 – Эффективность регистрации и significance при 2 < pT < 4

10 Заключение

В рамках этой работы было сгенерировано и реконструировано 4000 событий столкновения Au+Au при энергии 11 ГэВ и центральностях от 0 до 15 фм с помощью модели UrQMD, после чего события были реконструированы в системе обработки данных эксперимента MPD – MPDRoot.

Поскольку в центральных ядро-ядерных событиях пик π^0 -мезонов расположен на многократно превышающем его комбинаторном фоне, было искусственно добавлено по 200 π^0 – мезонов с поперечным импульсом в диапазоне от 0.5 до 2-х ГэВ. Сгенерированных событий было достаточно, чтобы наблюдать пик в диапазоне энергий около массы π^0 .

По полученным данным были определены критерии идентификации нейтральных кластеров и вычислены эффективности и соотношения сигнала к шуму для каждого из них.

Список использованных источников

- [1] Кекелидзе В.Д. Потребников Ю.К. и др. Технический проект объекта «КОМПЛЕКС NICA»: Tech. Rep.: : 2018.
- [2] NICA White Paper. 2014.
- [3] TDR EcAL: Tech. Rep.: : 2018.
- [4] Alice Physics Performance Report. 2005. T. 2. C. 128–131.