Министерство науки и высшего образования Российской Федерации

Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский ядерный университет «МИФИ»

ОТЧЁТ ПО НИРС НА ТЕМУ:

Изучение генерации, симуляции и реконструкции процесса ассоциированного рождения Z-бозона с фотоном в условиях эксперимента ATLAS

Научный руководитель к.ф.-м.н.

Выполнила студентка группы М19-115 Е. Ю. Солдатов

С. А. Нечаева

Москва, 2020

Содержание

Содержание			1
1	Введение		2
2	Описание эксперимента ATLAS		3
3	Программные пакеты для генерации, симуляции и реконструкции		
	событий		5
	3.1	Монте-Карло генератор MadGraph5_aMC@NLO	5
	3.2	Пакет для быстрого моделирования эксперимента на коллай-	
		дере Delphes	5
	3.3	Пакет для моделирования прохождения частиц сквозь веще-	
		ство GEANT4	6
4	Генерация, симуляция и реконструкция процесса ассоциированн		
	рождения Z-бозона с фотоном в условиях эксперимента ATLAS $$		8
	4.1	Параметры моделирования	8
	4.2	Результаты моделирования и их анализ	9
5	Заклю	очение	13
Спи	Список использованных источников		

1 Введение

После открытия бозона Хиггса [1] была оконательно построена Стандартная Модель (СМ) [2] — современная модель элементарных частиц, наиболее точно описыващая экспериментальные данные в физике высоких энергий. Однако у Стандартной модели есть ряд недостатков: в частности, в СМ масса нейтрино принимается равной нулю, не объясняется барионная асимметрия Вселенной, а также предсказывается СР-нарушение в сильном взаимодействии. Таким образом, СМ неполна. Поэтому становятся важными тщательная проверка СМ и поиск отклонений от неё.

В настоящий момент группой ATLAS НИЯУ МИФИ ведётся работа по изучению процесса электрослабого рождения Z-бозона с фотоном, двумя струями и последующим распадом Z-бозона на нейтрино и антинейрино [3]. Отклонение от предсказанного CM сечения в этом процессе будет указывать на наличие "новой физики"за рамками CM. Оно может возникнуть в следствии существования процесса, проходящего через механизм вне CM.

Целью данной работы является изучение генерации, симуляции и реконструкции этого процесса в условиях эксперимента ATLAS [4], а также проверка границ применимости быстрой симуляции и реконструкции данного процесса с помощью программного пакета Delphes [5].

2 Описание эксперимента ATLAS

Эксперимент ATLAS [4] на Большом Адронном Коллайдере (LHC, CERN) представляет собой многоцелевой детектор с цилиндрической координатной системой, способный регистрировать частицы в телесном угле 4π (см Рис. 1).

Рис. 1 — Схема детектора ATLAS.

Координатная система детектора ATLAS устроена следующим образом. Ось z направлена вдоль движения пучка частиц (в части A (side-A) детектора значения z принимают положительные значения, а в части C (side-C) отрицательные); плоскость Оху перпендикулярна пучку частиц. Ось x направлена от вершины взаимодействия к центру кольца LHC, а ось у направлена вертикально вверх. Полярный угол θ отсчитывается между направлением пучка и выбранной точкой, а азимутальный угол ϕ отчитывается от оси x в плоскости Оxy. Псевдобыстрота определяется как $\eta = -ln \ tan(\frac{\theta}{2})$. Поперечный импульс p_T , поперечная энергия E_T и поперечная недостающая энергия E_T^{miss} определяются в плоскости Оxy.

Детектор ATLAS состоит из Внутреннего Детектора (Inner Detector), системы калориметров, Мюонного Спектрометра, магнитной и триггерной системы.

Основной функцией Внутреннего детектора является реконструкция треков заряженных частиц, являющихся продуктами p-p столкновений. Он позволяет регистрировать заряженные частицы с псевдобыстротами в диапазоне $|\eta| < 2.8$. Калориметрическая система состоит из двух частей: внутренний Электромагнитный Калориметр и Адронный Калориметр, суммарно система позволяет измерять энергию частиц с псевдобыстротами в диапазоне $|\eta| < 4.9$.

3 Программные пакеты для генерации, симуляции и реконструкции событий

3.1 Монте-Карло генератор MadGraph5 aMC@NLO

MadGraph5_aMC@NLO [6] предсталяет собой генератор событий на партонном уровне. Данный программный пакет позволяет моделировать матричные элементы процессов в пределах Стандартной Модели (СМ) и за её пределами. MadGraph5_aMC@NLO позволяет производить расчет сечений, генерацию редких событий. Моделирование процессов может производиться как на LO уровне (для любого Лагранжиана, заданного пользователем), так и на NLO уровне в случае использования моделей поддерживающих подобного рода расчеты (например КХД и электромагнитные поправки к процессам СМ).

Также одним из достоинств Монте-Карло генератора MadGraph5_aMC@NLO является то, что он способен взаимодействовать с другими генераторами, такими как Pythia8 [7], Herwig [8] (для моделирования процессов адронизации) и Delphes [5] (используется для быстрой симуляции и реконструкции коллайдерных экспериментов)

3.2 Пакет для быстрого моделирования эксперимента на коллайдере Delphes

Delphes [5] представляет собой программный пакет, реализованный на языке C++, позволяющий производить быстрое моделирование отклика детектора, представляющего собой эксперимент на коллайдере. Для моделирования доступны трекинговая система, магнитные поля, мюонные и калориметрические системы.

Для большинства феноменологических исследований в физике высоких энергий не требуется подробная детализация прохождения частиц сквозь вещество, и для них можно использовать пакеты для быстрой симуляции, такие как Delphes, выигрывая в быстродействии в несколько порядков по сравнению с

Программный пакет Delphes может принимать на вход выходные файлы большинства используемых генераторов событий и позволяет Таким образом, могут быть реконструированы параметры струй, значения E_T missing, фотоны, изолированные электроны, мюоны и тау-лептоны.

В данной работе используется модель эксперимента ATLAS, которая явля-

ется частью пакета программ Delphes.

Реконструкция струй в модели эксперимента ATLAS по умолчанию производится с помощью anti-kT алгоритма [9] с параметром конуса $\Delta R = 0.6$, где параметр ΔR определяется следующим образом:

$$\Delta R = \sqrt{(\eta^{i} - \eta^{j})^{2} + (\phi^{i} - \phi^{j})^{2}},$$

где $\eta^i, \eta^j, \phi^i, \phi^j$ — параметры пары частиц с номерами і и j.

3.3 Пакет для моделирования прохождения частиц сквозь вещество GEANT4

GEANT4 [11,12] (англ. GEometry ANd Tracking – геометрия и трекинг) – это программный пакет, реализованный на языке C++, состоящий из инструментов, которые способны точно моделировать прохождение частиц через вещество.

Все аспекты процесса моделирования были включены в инструментарий [12]:

- геометрия системы,
- используемые материалы,
- интересующие частицы,
- генерация первичных событий,
- физические процессы, регулирующие взаимодействия частиц,
- отслеживание треков частиц сквозь материалы и электромагнитные поля,
- отклик чувствительных компонентов детектора,
- генерация данных о событии,
- хранение событий и треков,
- визуализация детектора и траекторий частиц,
- сбор и анализ данных моделирования с различными уровнями детализации и уточнения.

GEANT4 позволяет создавать модели как с упрощенной геометрией, так и выполнять детальное моделирование детекторов, в том числе и таких как ATLAS. Конечным результатом моделирования эксперимента в GEANT4 являются показания детекторов, представимые в том же формате, что и данные реального эксперимента.

Реконструкция событий в рамках программного пакета GEANT4 не предусмотрена, в связи с этим реконструкция симулированных событий обычно производится отдельно.

Модель детектора ATLAS, реализованная при помощи программного пакета GEANT4 создана учеными из коллаборации ATLAS и входит в состав ПО Athena [13], используемого коллаборацией.

4 Генерация, симуляция и реконструкция процесса ассоциированного рождения Z-бозона с фотоном в условиях эксперимента ATLAS

С помощью Монте-Карло генераторов MadGraph5_aMC@NLO и Pythia8 было произведено моделирование процессов (на Рис. 2 приведена одна из фейнмановских диаграмм соответвующих процессам):

$$pp \rightarrow \nu_l \tilde{\nu}_l + \gamma$$

 $pp \rightarrow \nu_l \tilde{\nu}_l + \gamma + j$

 $\label{eq:mg5_aMC>generate p p > vl vl a [QCD] @0} \\ MG5_aMC>add \ process p p > vl vl a j [QCD] @1 \\ \end{array}$

Рис. 2 — Одна из фейнмановских диаграмм процессов.

Процесс рождения Z бозона с ассоциированным фотоном является одним из основных процессов для проверки предсказаний Стандартной Модели (СМ), а также для проверки экзотических моделей за рамками СМ.

4.1 Параметры моделирования

Для моделирования с помощью Монте-Карло генераторов MadGraph5 aMC@NLO+Pythia8 были введены следующие отборы:

- для струй: $p_T > 10$ ГэВ, $|\eta| < 5.5;$
- для фотонов: $p_T > 130$ ГэВ, $|\eta| < 3.0, \, \epsilon_\gamma = 0.1, \, R_{0\gamma} = 0.1, \, \chi_n = 2,$

где ϵ_{γ} , $R_{0\gamma}$, χ_n — параметры изоляции Frixione [14].

Моделирование процесса производилось в приближении NLO. Генерация производилась со статистикой 10 000 событий.

4.2 Результаты моделирования и их анализ

Для анализа применимости пакета программ Delphes при изучении процесса ассоциированного рождения Z-бозона с фотоном в условиях эксперимента ATLAS производится сравнение следующих распределений до и после симуляции в программном пакете Delphes (обозначены красным и синим цветами соответственно на Рис 3 - 14):

- для фотонов: распределение по переменным ϕ, η, p_T
- множественность струй (количество струй в событии)
- инвариантная масса лидирующей и сублидирующей струи
- для лидирующей и сублидирующей струй: распределение по переменным ϕ,η,p_T
- распределение по переменной E_T^{miss}

Под каждым из распределений построено значение эффективности реконструкции, равное отношению значений после реконструкции к значениям до реконструкции. Эффективность реконструкции совпадает с ожидаемой (порядка 80%).

Для того, чтобы произвести данное сравнение на языке C++ был написан код, позволяющий отобрать лидирующие и сублидирующие струи в событии. Лидирующей считается струя с максимальным p_T в событии, а сублидирующей – с p_T вторым по значению.

Рис. 9 — Распределение по переменн ф для сублидирующей струи

Рис. 10 — Распределение по переменной ϕ для лидирующей струи

5 Заключение

В рамках данной работы производилось изучение генерации, симуляции и реконструкции процесса ассоциированного рождения Z-бозона с фотоном в условиях эксперимента ATLAS.

Была произведена генерация этого процесса с использованием Монте-Карло генераторов MadGraph5_aMC@NLO и Pythia8, симуляция и реконструкция процесса выполнялись с помощью программного пакета Delphes. Также было произведено сравнение распределений по основным переменным для струй, фотонов и нейтрино на входе и на выходе симуляции детектора. Кроме того, для каждого распределения было построено значение эффективности реконструкции, которое позволяет проверить границы применимости быстрой симуляции и реконструкции с помощью программного пакета Delphes. Формы распределений после симуляции и реконструкции хорошо совпадают с генераторными. Эффективность реконструкции совпадает с ожиданиями.

В дальнейшем планируется осуществить аналогичное моделирование с помощью программного пакета GEANT4 и произвести сравнения точности реконструкции процесса с помощью GEANT4 и Delphes, а также проанализировать целесообразность использования симуляции с использованием GEANT4 в рамках изучения процесса ассоциированного рождения Z-бозона с фотоном в условиях эксперимента ATLAS.

Список использованных источников

- [1] Aad Georges et al. Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC // Phys. Lett. - 2012.
 - Vol. B716. - P. 1-29. - 1207.7214.
- [2] В.М.Емельянов. Стандартная модель и её расширения. М. : Физматлит, 2007.
- [3] Measurements of Z and Z production in pp collisions at s =8TeV with the ATLAS detector [Text] / ATLAS Collaboration // Phys. Rev. D 93 - 2016. - p.59. arXiv:1604.05232 [hep-ex].
- [4] Aad G et al. 2008 The ATLAS Collaboration, The ATLAS Experiment at the CERN Large Hadron Collider. JINST 3 S08003
- [5] DELPHES 3: a modular framework for fast simulation of a generic collider experiment [Text] / J. de Favereau, C. Delaere, P. Demin [et al.] // Journal of High Energy Physics. 2014. Feb. Vol. 2014, no. 2. P. 57. URL: https://doi.org/10.1007/JHEP02(2014)057.
- [6] J. Alwall et al, "The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations; [arXiv:1405.0301 [hep-ph]].
- [7] An Introduction to PYTHIA 8.2 [Text] / Torbjorn Sjostrand, Stefan Ask, Jesper R. Christiansen [et al.] // Comput. Phys. Commun. 2015. Vol. 191. "
- [8] Bahr, M. Herwig++ Physics and Manual [Text] / M. Bahr [et al.] // Eur. Phys. J. 2008. Vol. C58. P. 639707. 0803.0883.
- [9] M. Cacciari, G. P. Salam and G. Soyez, The Anti-k(t) jet clustering algorithm, JHEP 0804, 063 (2008) [arXiv:0802.1189 [hep-ph]].

- [10] J. Alwall, M. Herquet, F. Maltoni, O. Mattelaer, and T. Stelzer, MadGraph 5 : Going Beyond, JHEP 1106 (2011) 128, [arXiv:1106.0522].
- [11] GEANT4 Collaboration, CERN/LHCC 98-44, GEANT4: An Object-Oriented Toolkit for Simulation in HEP (http://geant4.web.cern.ch/geant4/)
- [12] S. Agostinelli et al., Nuclear Instruments and Methods in Physics Research A 506 (2003) 250–303
- [13] The Athena Framework, https://atlassoftwaredocs.web.cern.ch/athena/athenaintro/
- [14] S. Fixtone. Isolated photons in perturbative QCD, Phys.Lett. B429 (1998) 369-374
 [arXiv:hep-ph/9801442]