

Поиск ТМКЛ в Борексино

Нугманов Радик Поиск частиц тёмной материи, ускоренной в космических лучах, при помощи детектора Борексино

ст. гр. М19-115: Нугманов Радик

НИЯУ "МИФИ", НИЦ "Курчатовский Институт" Научный руководитель: к. ф.-м. н., нач. лаб. НИЦ "КИ": Литвинович Евгений Александрович

4 июня 2020 г.

Частицы тёмной материи, ускоренные в космических лучах

Поиск ТМКЛ в Борексино

Нугманов Радик T. Bringmann and M. Pospelov. Novel direct detection constraints on light dark matter. Phys. Rev. Lett. 122, 171801 (2019)

Рис.: Рассеяние частиц тёмной материи (сплошная линия) космическими лучами (пунктирная линия)

ТМКЛ - это вторичная компонента общего потока частиц ТМ с релятивистким импульсом, полученная путём рассеяния высокоэнергетических космических лучей на частицах холодной ТМ в гало Млечного пути

 $1 - \cos\theta$

$$T_{\chi}^{max} = rac{T_i^2 + 2m_i T_i}{T_i + (m_i + m_{\chi})^2 / (2m_{\chi})} \qquad \qquad T_{\chi}' = T_{\chi}^{max} - rac{2}{2},$$

Метод поиска ТМКЛ

Поиск ТМКЛ в Борексино

Нугманов Радик Метод поиска ТМКЛ: рассеяния на протонах сцинтиллятора

Массы сверху вниз:

- 🛯 1 МэВ
- ∎ 10 МэВ
- 100 МэВ
- 🛯 1 ГэВ

🛯 10 ГэВ

Рис.: Ожидаемый поток ТМКЛ для различных масс частиц ТМ.

Ожидаемый поток ТМКЛ очень мал. Даже для частиц χ с массой 1 МэВ, поток 10^{-5} см $^{-2}$ с⁻¹.

В этом семестре

- Поиск ТМКЛ в Борексино
- Нугманов Радик

- Уточнение фонового вклада космогенных нейтронов путём анализа Монте-Карло данных космогенных нейтронов
- По результатам анализа были установлены оптимальные условия отбора событий
- Новый анализ данных, который уточнил число отобранных событий-кандидатов

Детектор Борексино

Поиск ТМКЛ в Борексино

Нугманов Радик

Детектор предназначен для изучения Солнца по потоку нейтрино Обладает беспрецедентной степенью радиохимической чистоты сцинтиллятора И конструкционных материалов.

Рис.: Схема детектора Борексино

В составе Борексино работает Курчатовский Электронно Измерительный Комплекс (КЭИК)

Анализ чувствительности к ТМКЛ

Поиск ТМКЛ в Борексино

> Чугманов Радик

$$\sigma_\chi^{SDlim} = \Gamma_p^{DM} (rac{m_\chi+m_N}{m_\chi+m_p})^2 imes (\int_{T_1}^{T_2} dT_p \int_{T_\chi}^\infty rac{dT_\chi}{T_{max}} rac{d\Phi_{chi}(m_\chi)}{dT_\chi})^{-1}$$

Полученная область чувствительности рекордная в диапазоне масс χ [0.01; 0.1] GeV

Рис.: Чувствительность к спин-зависимой части сечения ТМКЛ детектора Борексино

Источники фона

Поиск ТМКЛ в Борексино

- Космические мюоны
- Быстрые нейтроны
- Собственный фон детектора
- Атмосферные нейтрино

Быстрые нейтроны

Поиск ТМКЛ в Борексино

Нугманов Радик Это космогенные нейтроны, проникшие в центр детектора. Данные получены методом Монте-Карло моделирования.

Vessel distance distribution of fasn neutrons events

Рис.: Распределение событий по расстоянию от стенки внутренней нейлоновой сферы

Данное распределение позволяет уточнить границы чувствительного объёма детектора

Критерии отбора событий

Поиск ТМКЛ в Борексино

- Рассматриваются только такие события, которые зарегистрированны обеими системами сбора данных Борексино (LABEN и FADC)
- t_{internal} > 2 с, где t_{internal}- время, прошедшее после попадания мюона в чувствительную часть детектора;
- t_{external} > 2 мс, где t_{external}- время, прошедшее после попадания мюона в буферную часть детектора;
- E_{event} > 2.0 МэВ, где E_{event}- это видимая энергия события;
- G > 0.02, где G значение параметра Гатти, рассчитанного для данного события;
- Событие имеет один кластер;
- Событие произошло в чувствительном объеме детектора.
- Оно не является шумом электроники;
- Тип триггера данного события равен 1;
- Условие одиночности события, т.е. до и после события в течение
 - 2 мс не должно быть ни одного другого события;

Ожидаемый фон

Нугманов Радик

Рис.: Энергетическое рапределение протонов одачи от атмосферных нейтрино. Получен методом Монте-Карло

На основе анализа смоделированных данных (статистика соотвествует 5.7 лет сбора данных детектором) для скорости счёта событий от атмосферных нейтрино получено: (10 ± 5) $\frac{\text{событий}}{5.7$ лет

Сигнал

Поиск ТМКЛ в Борексино

Нугманов Радик Время набора данных: с января 2010 по сентябрь 2019
Живое время: 2070 дней

Energy distribution of selected events

Рис.: Спектр отобранных событий

Всего отобрано 13 событий кандидатов

Рассчёт верхнего предела

Поиск ТМКЛ в Борексино

Нугманов Радик Верхние ограничения получены исходя из формулы:

$$\Phi(\,T_p) = rac{N_{90}(\Delta E_p,\,n_{obs},\,n_{bkg})}{\epsilon\,N_p\sigma(m_\chi)\Delta\,T}$$

Где:

- $N_p = 1.6 \cdot 10^{32}$ количество протонов мишеней
- ΔТ живое время сбора данных
- σ(m_χ) было взято из анализа чувствительности

Результаты

Поиск ТМКЛ в Борексино

Нугманов Радик

Рис.: Сплошная линия - Верхнее ограничение на поток ТМКЛ в зависимости от минимальной кинетической энергии ТМКЛ для различных масс χ . Пунктирная линия - результат полученный в прошлом семестре

Результаты

Поиск ТМКЛ в Борексино

Нугманов Радик

Интегральное значение верхнего предела для различных масс χ

Результат, см $^{-2}$ с $^{-1}$	Прошлый результат , см $^{-2}$ с $^{-1}$	т _х , ГэВ
$\Phi_{TMKЛ} < 7.5 \cdot 10^{-12}$	$\Phi_{TMKJ} < 1.59 \cdot 10^{-11}$	10
$\Phi_{TMKЛ} < 1.8 \cdot 10^{-10}$	$\Phi_{TMKJ} < 3.89 \cdot 10^{-10}$	1
$\Phi_{TMKЛ} < 5.7 \cdot 10^{-10}$	$\Phi_{TMKJ} < 1.21 \cdot 10^{-9}$	0.1
$\Phi_{TMKЛ} < 7.5 \cdot 10^{-10}$	$\Phi_{TMKJ} < 1.45 \cdot 10^{-9}$	0.01

Это первое экспериментальное ограничение на поток ТМКЛ в Борексино.

Заключение

Поиск ТМКЛ в Борексино

- Проведен анализ фонового вклада быстрых космогенных нейтронов. Результатом стали уточненные условия отбора событий рассеяния на протоне.
- На основании полученной ранее оценки чувствительности был произведён поиск таких событий в детекторе Борексино. Статистически значимого превышения над фоновым значением не обнаружено.
- Получен более строгий верхний предел на поток ТМКЛ в детекторе Борексино

Спасибо за внимание

Поиск ТМКЛ в Борексино

Запасные слайды

Поиск ТМКЛ в Борексино

Нугманов Радик

Поток атмосферных нейтрино, измеренный экспериментально

Запасные слайды

Поиск ТМКЛ в Борексино

Поиск ТМКЛ в Борексино

Запасные слайды

Запасные слайды

Поиск ТМКЛ в Борексино

Нугманов Радик Жидкий сцинтиллятор обладает свойством выделять разное количество света в зависимости от типа попавшей в него частицы.

Так как в анализе регистрировались протоны отдачи, то видимая энергия в детекторе будет заметно меньше их реальной энергии.

Quenching effect of protons in Borexino

Запасные слайды

Поиск ТМКЛ в Борексино

$$egin{aligned} N_{ph} &= Y_{scint} imes E imes Q(E) \ Q(E) &= rac{1}{E} \int_{0}^{E} rac{dE'}{1+kBrac{dE}{dx}(E')} \ N_{pe} &= Y_{det} imes E imes Q(E) \end{aligned}$$

Поиск

ТМКЛ в Борексино

Метод разделения событий по форме импульса (метод Гатти)

Борексино регистрирует разные типы событий:

- электроны отдачи
- протоны отдачи
- α-частицы

Эти события имеют разную форму импульса. Идентификация их основана на знании средней формы импульсов разделяемых сигналов (метод Гатти). Для настройки метода были провведены калибровки детектора источником быстрых нейтронов Am-Be.

 $P(0)_{\gamma} = 0.19\%$ $P(0)_{protons} = 88.81\%$

