Оценка вклада фонового процесса неверной идентификации электрона как фотона в ассоциированное рождение Z бозона с фотоном в pp столкновениях с энергией $\sqrt{s} = 13$ TэB в эксперименте ATLAS

Зубов Д.В.

нияу мифи

Научный руководитель: Солдатов Е.Ю.

Консультант: Курова А.С.

Москва, 2020

Введение

- Изучается процесс $Z(\rightarrow \nu \bar{\nu})\gamma jj;$
- Отклонение от предсказанного СМ сечения в этом процессе наличие «новой физики» за рамками СМ;
- Сигнатура процесса фотон с большим поперечным импульсом и большим E^{miss}.
- Схожая сигнатура процессы, в которых электрон неверно идентифицируется как фотон.

Оценка частоты неверной идентификации электрона как необходима для оценки вклада фонового процесса $W(\to e\bar{\nu})$ в измеряемый процесс $Z(\to \nu\bar{\nu})\gamma jj$, и уточнение оценки данного фона, позволяет точнее измерить сечение процесса $Z(\to \nu\bar{\nu})\gamma jj$.

Метод оценки частоты неверной идентификации электрона как фотона

Оценка частоты неверной идентификации вычислялась по следующим образом:

$$\nu_{e \to \gamma} = \frac{N_{e\gamma}}{N_{ee}}$$

 $N_{e\gamma}, N_{ee}$ - число пар с инвариантной массой от 80 до 100 ГэВ.

Отборы событий: $PT_{min}(\gamma \to e\gamma) = 150$ ГэВ; $PT_{min}(e_{lead} \to ee) = 150$ ГэВ; $PT_{min}(e_{sublead}) = 25$ ГэВ; $1.37 \le |\eta| \le 1.52, |\eta| \le 2.37$

Оценка частоты проводилась на данных второго сеанса работы БАКа, собранных экспериментом ATLAS.

Исследование зависимости частоты неверной идентификации от региона фазового пространства.

Частота неверной идентификации зависит от η и p_T фотона. Для учета этих зависимостей оценка проводилась в трех регионах:

- ▶ Центральный регион (|η| < 1.37) с *p*_T < 250 ГэВ;
- ▶ Центральный регион (|η| < 1.37) с *p*_T > 250 ГэВ;
- ▶ Передний регион (1.52 < |η| < 2.37).</p>

(日)

Учет комбинаторного фона при вычислении частоты неверной идентификации

Источником отбираемых пар ее и $e\gamma$, помимо событий распада $Z(\rightarrow ee)$, могут быть другие фоновые процессы. В таком случае, для улучшения оценки частоты неверной идентификации необходимо вычитание этого фона:

$$rate_{e
ightarrow \gamma} = rac{N_{e\gamma} - N_{bkg}}{N_{ee} - N_{bkg}},$$

Описание формы распределения инвариантной массы сигнальных событий в Монте-Карло

Проводилось фитирование в данных Монте-Карло симуляции процесса $Z(\rightarrow ee)$. В качестве фитирующей функции выбирался Воигтиан. Воигтиан представляет собой свертку распределений Гаусса и Брейта-Вигнера и учитывает естественную ширину распада *Z*-бозона и разрешение детектора:

イロト 不得下 イヨト イヨト 二日

 $Voigtian(E, M, \Gamma, \sigma) = \int_{-\infty}^{+\infty} Gauss(x, M, \sigma) BreitWigner(E - x, M, \Gamma) dx$

Оценка комбинаторного фона в распределении инвариантной массы $e\gamma$

Фитирование производилось суммой Воигтиана и прямой. Число фона есть интеграл под прямой в интервале 80-100 ГэВ.

Данное описание фона имеет хороший уровень согласия χ^2 .

Комбинаторный фон в распределении инвариантной массы *ее*

Фон в распределении инвариантной массы *ее* распределен более сложным немонотонным образом. Источником отбираемых пар *ее*, помимо событий распада $Z(\rightarrow ee)$, могут быть другие фоновые процессы, например процесс Дрелла-Яна $\gamma^*(\rightarrow ee)$, а также интерференция $Z\gamma^*(\rightarrow ee)^1$.

Figure 2.5: The theoretical predictions for the cross-sections of the Drell-Yan $Z/\gamma^* \rightarrow ee$ processes, normalized to $Z \rightarrow ee$ peak value. The cross-sections were calculated in leading order, using the CT10 PDF set.

¹Sedov G.Measurement of Z boson production using Z(\rightarrow ee) decays with one of the electrons detected in the forward calorimeters of the ATLAS detector using 4.6 fb¹ of data collected $\sqrt{s} = 7$ TeV / Sedov George. - 2016. - p. 15.

Оценка комбинаторного фона в распределении инвариантной массы *ее*

Максимальное и минимальное значение фона вычислялось, как интеграл под «максимальной» и «минимальной» кривой.

Производилось раздельное фитирование суммой полинома третьей степени и Воиттиана в интервалах 30-80 и 100-150 ГэВ. При фитировании параметры Воиттиана Г, M, σ были фиксированы. Полиномы полученные в результате фитирования экстраполировались в область 80-100 ГэВ. Число фона в интервале 80-100 ГэВ оценивается по формуле:

$$ar{J}_{bkg}=rac{N_{bkgmax}+N_{bkgmin}}{2},$$
 где $\Delta N_{bkg}=rac{N_{bkgmax}-N_{bkgmin}}{2}$

< ロ > < 同 > < 回 > < 回 > < □ > <

-

Систематические погрешности

- ▶ Неопределенность выбора массового окна Z-пика.
- Неопределенность оценки числа событий комбинаторного фона под Z-пиком.

Ошибка самого метода, оцениваемая как абсолютная разность между «истинной частотой неверной идентификации» и «измеряемой частотой неверной идентификации» в Z(→ ee) MC.

Результаты оценки частоты неверной идентификации и ее погрешностей

	$ \eta < 1.37$,	$ \eta < 1.37$,	$ 1.52 < \eta < 2.37$
	<i>р</i> _Т < 250 ГэВ	<i>р</i> _Т > 250 ГэВ	
δ _{Фон.} ,%	1.97	1.03	3.05
$\delta_{Вариация масс. окна}, \%$	0.29	0.40	0.68
$\delta_{Metod.}, \%$	3.09	13.40	8.70
$\delta_{total \ syst}, \%$	3.68	13.44	9.24

Таблица: Статистические погрешности для каждой рассматриваемой области по η и p_{T}

Систематика, связанная с ошибкой самого метода, является доминирующей во всех регионах.

Регион	$ u_{e ightarrow \gamma} \pm \Delta_{stat} \pm \Delta_{syst}, \ \%$
$ \eta < 1.3$ 7, $p_T < 250$ ГэВ	$2.04 \pm 0.05 \pm 0.08$
$ \eta < 1.3$ 7, $p_T > 250$ ГэВ	$1.74 \pm 0.11 \pm 0.23$
$1.52 < \eta < 2.37$	$5.88 \pm 0.16 \pm 0.54$

Таблица: Результаты оценки частоты неверной идентификации в трех регионах с учетом погрешностей

Заключение

В ходе работы:

- Освоены базовые принципы отбора событий, основанного на установке пределов на кинематические переменные для улучшения идентификации искомого процесса;
- Получена оценка частоты ложной идентификации электрона как фотона в процессе Z(νν)γjj с учетом зависимости от псевдобыстроты и поперечного импульса;
- Оценена систематическая погрешность частоты неверной идентификации.

В дальнейшем результаты работы будут использованы для улучшения оценки систематических погрешностей процесса ложной идентификации электрона как фотона в процессе $Z(\rightarrow \nu \bar{\nu})\gamma jj$.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ りへつ

Дополнительные слайды.

Неопределенность выбора массового окна Z-пика.

	$ \eta < 1.37$,	$ \eta < 1.37$,	$1.52 < \eta < 2.37$
	<i>р_T <</i> 250 ГэВ	<i>р_T ></i> 250 ГэВ	
N _{ee}	82165.8	14024.2	26786.2
N _{eγ}	1482.21	246.112	1385.43
σ_{ee}	762.778	55.5789	117.002
$\sigma_{e\gamma}$	25.9779	7.12257	24.3098
$\nu_{e \to \gamma}, \%$	1.80393	1.75492	5.17219
$N_{ee} + \sigma$	83404.5	14372.9	27290.7
$N_{e\gamma} + \sigma$	1508.95	253.236	1410.65
$\nu_{e \to \gamma}, \%$	1.80918	1.76190	5.169
$\Delta(\nu_{e \to \gamma}), \%$	$5.25719 \cdot 10^{-3}$	$6.98795 \cdot 10^{-3}$	$3.19439 \cdot 10^{-3}$
$\delta_{syst.}(\nu_{e \to \gamma}), \%$	0.291431	0.398193	0.0617609
$N_{ee} - \sigma$	80745.7	13649.5	26130.1
$N_{e\gamma} - \sigma$	1453.62	238.895	1360.75
$\nu_{e \to \gamma}, \%$	1.80025	1.75021	5.20761
$\Delta(\nu_{e \to \gamma}), \%$	$3.679 \cdot 10^{-3}$	$4.70092 \cdot 10^{-3}$	$35.4159 \cdot 10^{-3}$
$\delta_{syst.}(\nu_{e \to \gamma}), \%$	0.20392	0.267872	0.684738

Таблица: Результаты вариации массового окна и оценки соответствующего вклада в систематическую погрешность для каждой рассматриваемой области по η и p_T

Неопределенность оценки числа событий комбинаторного фона под *Z*-пиком.

	N	N _{bkg}	ΔN_{bkg}	$\delta_{syst.}(\nu_{e \to \gamma}), \%$
ee, $ \eta < 1.37$,	85569	3820	1595	1.95
<i>р</i> _Т < 250 ГэВ				
ee, $ \eta < 1.37$,	14825	404	149	1.03
<i>р_T ></i> 250 ГэВ				
ee, $1.52 < \eta < 2.37$	25166	1536	722	3.05
$ e\gamma, \eta <1.37,$	1927	257	5	0.30
<i>р_T <</i> 250 ГэВ				
e γ , $ \eta < 1.37$,	281	29.71	0.02	0.08
р _Т > 250 ГэВ				
e γ , 1.52 $< \eta <$ 2.37	1490	101.1	0.7	0.05

Таблица: Результаты вычислений количества фоновых событий и соответствующего вклада в систематическую погрешность для каждой рассматриваемой области по η и p_T

(日)

Ошибка самого метода, оцениваемая как абсолютная разность между «истинной частотой неверной идентификации» и «измеряемой частотой неверной идентификации» в $Z(\rightarrow ee)$ MC.

	$ \eta < 1.37$,	$ \eta < 1.37$,	$1.52 < \eta < 2.37$
	<i>р_T <</i> 250 ГэВ	<i>р_T ></i> 250 ГэВ	
Оценка «и	ізмеряемой» часто	ты неверной идент	гификации
Nee	81484.1	14033.7	25558.5
$N_{e\gamma}$	1482.21	246.112	1385.43
$\nu_{e \to \gamma}, \%$	1.81902	1.75372	5.42063
Оценка «истинной» частоты неверной идентификации			
N _{ee}	144968	28167.5	46474.7
$N_{e\gamma}$	2557.88	560.172	2738.51
$\nu_{e \to \gamma}, \%$	1.76445	1.98872	5.89248
$\Delta(\nu_{e \to \gamma}), \%$	$54.57 \cdot 10^{-3}$	$235 \cdot 10^{-3}$	$471.85 \cdot 10^{-3}$
$\delta_{syst.}(\nu_{e\to\gamma}),\%$	3.09	13.4	8.70

Таблица: Результаты оценки погрешности самого метода и оценки соответствующего вклада в систематическую ошибку для каждой рассматриваемой области по η и p_T

Результирующие статистические и систематические погрешности.

	$ \eta < 1.37$,	$ \eta < 1.37$,	$ 1.52 < \eta < 2.37$	
	<i>р</i> _Т < 250 ГэВ	$p_T > 250$ ГэВ		
	Статистически	е погрешности		
N _{ee}	85569	14825	25166	
$\delta_{N_{ee}stat}, \%$	0.34	0.82	0.63	
$N_{e\gamma}$	1927	281	1490	
$\delta_{N_{ee}stat},\%$	2.28	5.97	2.59	
$\delta_{total \ stat}, \%$	2.31	6.03	2.67	
Систематические погрешности				
$\delta_{Background syst}, \%$	1.97	1.03	3.05	
$\delta_{Mass window syst}, \%$	0.29	0.40	0.68	
$\delta_{Method syst}, \%$	3.09	13.40	8.70	
$\delta_{total syst}, \%$	3.68	13.44	9.24	

Таблица: Статистические и систематические погрешности для каждой рассматриваемой области по η и p_T

Воигтиан

Оценка формы фона в распределении инвариантной массы еγ проводилась путем фитирования распределения суммой полинома третьей степени и Воигтиана, где Воигтиан есть свертка распределения Гасса и распределения Брейта-Вигнера:

$$F_{fit}(x) = POL3(x) + Voigtian(x)$$
(1)

$$Gauss(M, \sigma) \times BreitWigner(M, \Gamma) = Voigt(M, \Gamma, \sigma).$$
(2)

Таким образом события в распределении от распада Z-бозона описывались Воигтианом, а фон полиномом третьей степени.

$$F_{fit} = p_4 + p_5 \cdot x + p_6 \cdot x^2 + p_7 \cdot x^3 + p_0 \cdot Voigt(M, \Gamma, \sigma),$$
(3)

Фитирование проводилось в интервалах (75-85) ГэВ и (95-105) ГэВ. При фитировании такие параметры Воигтиана как ширина распада Z-бозона Г, масса Z-бозона М, среднеквадратичное отклонение σ фиксировались: M = 91.2ГэВ - масса , $\Gamma = 0.084$ ГэВ[б], $\sigma = 1.79$ ГэВ. Параметр ρ_0 ответственный за высоты пика принимал значения в фиксированном интервале, таком чтобы при фитировании высота Воигтиана лежала в пределах 10% от высоты пика распределения. Фиксирования и ограничение принимаемых значений параметров необходимо для стабильного фитирования. Значение параметра σ оценивалось из ширины пика Z-бозона на полувысоте по формуле:

$$FWHM_{Voigt} \approx \frac{\Gamma}{2} + \sqrt{\frac{\Gamma^2}{4} + (2.35 \cdot \sigma)^2}.$$
 (4)

Воигтиан

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

æ

Параметры Воигтиана

	$ \eta < 1.37$,	$ \eta < 1.37$,	1.52 <
	<i>р_T <</i> 250 ГэВ	<i>р_T ></i> 250 ГэВ	
<i>М</i> , ГэВ	91.07	91.09	90.89
Г, ГэВ	3.185	3.172	3.439
σ , ГэВ	1.068	0.858	1.307

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ = 臣 = のへで

Таблица: Параметры Воигтиана полученные фитированием в Монте-Карло