МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ЯДЕРНЫЙ УНИВЕРСИТЕТ «МИФИ» (НИЯУ МИФИ)

ИНСТИТУТ ЯДЕРНОЙ ФИЗИКИ И ТЕХНОЛОГИЙ КАФЕДРА №40 «ФИЗИКА ЭЛЕМЕНТАРНЫХ ЧАСТИЦ»

УДК 531.3, 539.1.05

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА К БАКАЛАВРСКОЙ ДИПЛОМНОЙ РАБОТЕ ОЦЕНКА ВКЛАДА ФОНОВОГО ПРОЦЕССА НЕВЕРНОЙ ИДЕНТИФИКАЦИИ ЭЛЕКТРОНА КАК ФОТОНА В АССОЦИИРОВАННОЕ РОЖДЕНИЕ Z БОЗОНА С ФОТОНОМ В РР СТОЛКНОВЕНИЯХ С ЭНЕРГИЕЙ $\sqrt{s}=13$ ТЭВ В ЭКСПЕРИМЕНТЕ ATLAS

Студент	Д.В.Зубов
Научный руководитель,	
к.фм.н., доцент	Е. Ю. Солдатов
Научный консультант,	
инженер	А. С. Курова

ВЫПУСКНАЯ КВАЛИФИКАЦИОННАЯ РАБОТА БАКАЛАВРА

ОЦЕНКА ВКЛАДА ФОНОВОГО ПРОЦЕССА НЕВЕРНОЙ ИДЕНТИФИКАЦИИ ЭЛЕКТРОНА КАК ФОТОНА В АССОЦИИРОВАННОЕ РОЖДЕНИЕ Z БОЗОНА С ФОТОНОМ В РР СТОЛКНОВЕНИЯХ С ЭНЕРГИЕЙ $\sqrt{s}=13$ ТЭВ В ЭКСПЕРИМЕНТЕ ATLAS

Студент	Д. В. Зубов
Научный руководитель,	
к.фм.н., доцент	Е. Ю. Солдатов
Научный консультант,	
инженер	А. С. Курова
Рецензент,	
инженер	Т. А. Овсянникова
Секретарь ГЭК,	
к.фм.н.	А. А. Кириллов
Зав. каф. №40,	
д.фм.н., проф.	М. Д. Скорохватов

РЕФЕРАТ

Отчет 33 с., 26 рис., 6 табл., 10 источн.

КЛЮЧЕВЫЕ СЛОВА

Эксперимент ATLAS, электромагнитная калориметрия, идентификация фотонов, Монте-Карло моделирование, Z-бозон

ЦЕЛЬ РАБОТЫ

Оценка вклада процесса неверной идентификации электрона как фотона в электрослабом рождении Z-бозона с фотоном и двумя струями.

ИСПОЛЬЗОВАННЫЕ МЕТОДЫ И ИНСТРУМЕНТАРИЙ

- 1) Программный пакет Root;
- 2) Программный пакет RooFit;
- 3) Метод оценки частоты неверной идентификации электрона как фотона.

ПОЛУЧЕННЫЕ РЕЗУЛЬТАТЫ

Оценена частота ложной идентификации электрона как фотона. Оценены статистическая и систематическая погрешности частоты ложной идентификации для трёх регионов по псевдобыстроте и энергии.

СОДЕРЖАНИЕ

B	веде	ние		4
1	Экс	сперим	иентальная установка ATLAS	6
	1.1	Данні	ые	8
2	Me	год оц	енки частоты неверной идентификации.	9
	2.1	Иссле	дование зависимости частоты неверной идентификации	
		от рег	гиона фазового пространства	11
	2.2	Оцени	ка количества фона в распределении по инвариантной	
		массе	электрона и фотона.	13
		2.2.1	Описание формы сигнала в Монте-Карло	16
		2.2.2	Фитирование распределения инвариантной массы элек-	
			трона и фотона	20
		2.2.3	Фитирование распределения инвариантной массы двух	
			электронов	21
	2.3	Оцени	ка систематических и статистических ошибок	28
3	аклю	чение		32
\mathbf{C}	писо	к испо	ользованных источников	33

ВВЕДЕНИЕ

На сегодняшний день одним из фундаментальных направлений в физике является изучение процессов протекающих при высоких энергиях. Это обусловлено тем, что подобные энергии позволяют более подробно изучить механизмы процессов, происходящих во Вселенной, а также проследить её развитие с момента Большого взрыва, поскольку, согласно современным теориям [1], материя в начальный момент времени находилась в состоянии с чрезвычайно высокой плотностью и энергией. На сегодняшний день основным направлением в этой области являются эксперименты по проверке Стандартной модели (СМ) и поиску отклонений от неё.

СМ представляет собой основную, всесторонне подтвержденную теорию, описывающую электромагнитное, слабое и сильное взаимодействия всех известных элементарных частиц [2]. Однако она не описывает гравитацию [3], а также, например, не может объяснить природу тёмной материи и тёмной энергии [4] или массу нейтрино. Поэтому проверка предсказаний СМ и поиск отклонений от неё являются весьма актуальными. Особый интерес представляет собой детальный анализ очень редких процессов (сечение порядка 1 фб). В рамках высокоточных испытаний этого сектора СМ проводятся исследования рождения пар бозонов. Процессы совместного рождения Z-бозона с другими бозонами наблюдались на экспериментах LEP [5], Tevatron [6] и LHC [7], и полученные сечения согласуются с предсказаниями СМ.

В настоящий момент группой ATLAS НИЯУ МИФИ ведётся работа по изучению процесса электрослабого рождения Z-бозона с фотоном двумя струями и последующим распадом Z-бозона на нейтрино и антинейрино. Отклонение от предсказанного СМ сечения в этом процессе будет указывать на наличие «новой физики» за рамками СМ. Оно может возникнуть в следствии существования процесса, проходящего через механизм вне СМ.

Так как напрямую нейтрино никак не взаимодействуют с детектором, с ним ассоциируют вектор недостающего импульса, восстановленного в по-

перечной плоскости \vec{p}_T^{miss} . Таким образом сигнатурой данного процесса в детекторе является наличие восстановленного фотона с высоким поперечным импульсом и большого $E_T^{miss}(\text{модуль }\vec{p}_T^{miss})$. Схожую сигнатуру имеет ряд процессов, которые являются фоновыми для $Z(\to \nu \bar{\nu}) \gamma jj$. Одним из таких фонов является рождение W-бозона с последующим распадом в электрон(позитрон), неверно идентифицируемый как фотон, и антинейтрино(нейтрино). Целью данной работы является оценка вклада процесса неверной идентификации электрона как фотона в электрослабом рождении Z-бозона с фотоном и двумя струями.

1. ЭКСПЕРИМЕНТАЛЬНАЯ УСТАНОВКА ATLAS

Эксперимент ATLAS[8] (ATLAS — A Toroidal LHC ApparatuS) многоцелевой детектор, покрывающий почти полный телесный угол. В эксперименте ATLAS используется прямоугольная система координат. Ось z направлена по оси пучка, x - к центру кольца, y - вверх, ϕ - азимутальный угол в плоскости xOy, перпендикулярной пучку, отсчитывается от оси x, θ - полярный угол, отсчитывается от оси Z . В основном при работе используется величина, зависящая от полярного угла $\eta = -\ln\left(\operatorname{tg}\frac{\theta}{2}\right)$, называемая псевдобыстротой, т.к. она аддитивна относительно преобразований Лоренца.

Эксперимент ATLAS включает в себя внутренний детектор (ВД), систему калориметров, мюонный спектрометр (МС), магнитную и тригерную системы (Рис.1.1).

Рисунок 1.1 — Детектор ATLAS

Основная задача внутреннего детектора - восстановление треков за-

ряженных частиц. ВД состоит из трех подсистем : пиксельного (Pixel) и силиконового (SCT) микростриповых детекторов, а также трекера переходного излучения (TRT). Пиксельный детектор состоит из трех цилиндрических слоев и трех торцевых пластин и в общем содержит 80 миллионов пикселей. Ближайший к пучку слой называют В-слоем. Он находится на расстоянии 3.3 см от пучка и имеет важную роль в востановлении треков. SCT детектор включает 4 цилиндреческих слоя и 9 дисков в каждом торце, состоящих из силиконовых микрострипов. Силиконовый и пиксельный детекторы покрывают область псевдобыстроты $|\eta < 2.5|$. TRT, состоящий из тонких трубок, напоненных смесью Xe и Ar, покрывает область псевдобыстрот $|\eta < 2.0|$.

Калориметрическая система состоит из электромагнитной (ЭМК) и адронной подсистем. ЭМК играет решающую роль в идентификации электронов и фотонов. Он состоит из слоев свинца и жидкого аргона и имеет геометрию аккордеона. ЭМК делится на центральную часть, покрывающую область псевдобыстрот $|\eta| < 1.475$, и две торцевые части (каждая из которых состоит из двух коаксиальных колёс), покрывающие область псевдобыстрот $1.375 < |\eta| < 3.2$. В области псевдобыстрот $1.37 < |\eta| < 1.52$ находится технический зазор, в котором измерения не проводятся. Адронный калориметр состоит из 3-х различных систем: Tile-калориметр, торцевой LAr-калориметр и передний LAr-калориметр. Tile-калориметр размещается снаружи корпуса ЭМ-калориметра. Он состоит из органических сцинтилляторов и позволяет регистрировать энергии адронов в области с псевдобыстротой $|\eta < 1.7|$. Торцевой LAr-калориметр, рабочим веществом которого является жидкий аргон, расположен за торцевым ЭМ-калориметром. Он перекрывает область псевдобыстрот 1.5 $< |\eta| < 3.2$. Передний LArкалориметр, также основанный на жидком аргоне, создает однородность калориметрии и поглощает фон перед мюонными камерами. Его область псевдобыстрот: $3.1 < |\eta| < 4.9$.

МС востанавливает импульс и треки пролетающих мюонов с максимально возможным разрешением. Состоит из четырёх подсистем, использующих разные технологии: Мониторируемые Дрейфовые Трубки, Катодные Стриповые Камеры, Резистивные Плоские Камеры и Тонко-Зазорные Камеры. Эти подсистемы погружены в магнитное поле, генерируемое тре-

мя тороидами: один центральный покрывает диапазон по псевдобыстроте $|\eta<1.5|$ обеспечивая поле в 0.5 Тл и ещё два, расположенные в области большей псевдобыстроты $|\eta>1.5|$ генерируют поле в 1 Тл.

Для предварительного отбора «интересных» столкновений используется система триггеров. В результате её,при номинальной частоте столкновений 40 М Γ ц, интересные события поступают со средней частотой 200 Γ ц.

Для измерения импульсов создана специальная система магнитов, создающая электромагнитное поле, которое искривляет траектории заряженных частиц. Она состоит из 4-х сверхпроводящих магнитов: соленоида и трёх тороидов. Подразделяется на 2 основных составляющих — внутреннюю (соленоид) и внешнюю (тороидальные магниты).

1.1. ДАННЫЕ

В анализе использовались данные протон-протонных столкновений с энергией в центре масс $\sqrt{s}=13$ ТэВ, собранные экспериментом ATLAS за 2015-2018 годы с суммарной светимостью 139 фб $^{-1}$. Также использовались данные Монте-Карло симуляции генератором Sherpa 2.1.1 процесса $Z \to ee$.

2. МЕТОД ОЦЕНКИ ЧАСТОТЫ НЕВЕРНОЙ ИДЕНТИФИКАЦИИ.

При прохождении фотона в веществе внутреннего детектора возможно рождение электрон-позитронной пары, которая может быть зарегистрирована в трековым детектором. Фотоны, восстановленные из такой электрон-позитронной пары, называют конверсионными. Конверсионные фотоны иногда восстанавливаются из одного электронного/позитронного трека, так как электроны/позитроны как больших, так и малых энергий могут не оставить трека. В этом случае в электромагнитном калориметре возникнет электромагнитный ливень, который будет расцениваться как фотон. Частота такой ошибочной идентификации колеблется от 2 до 18% в зависимости от импульса и псевдобыстроты частицы[9]. 1

Частота неверной идентификации в первом приближении может быть оценена как отношение числа событий с электроном и фотоном $(e\bar{\gamma})$ к числу событий с электроном и позитроном $(e\bar{e})$ при условии, что инвариантная масса каждой из пар частиц лежит в пределах 20 ГэВ вблизи массы Z бозона. Фотон в событиях $e\gamma$, а также электрон с наиболее высокой поперечной энергией в событиях ee должен был иметь ту же энергию, что и фотон в области измерения электрослабого процесса $Z(\to \nu\bar{\nu})\gamma jj$, то есть не менее 150 ГэВ. Поперечный импульс второго электрона должен быть больше чем 25 ГэВ. Абсолютное значение псевдобыстроты электронов и фотона в событиях должна быть 2.37, исключая при этом $1.37 < |\eta^e| < 1.52$. Помимо этих условий, фотоны должны удовлетворять критериям изолированности, то есть $E_T^{cone40} < 0.022p_T + 2.45$, $p_T^{cone20}/p_T < 0.05$.

$$rate_{e \to \gamma} = \frac{N_{e\gamma}}{N_{ee}},\tag{2.1}$$

Поскольку Z бозон не может распадаться в электрон и фотон, делается вывод, что фотон в данном случае является либо жёстким тормозным

 $^{^{1}}$ Везде далее под электроном будет подразумеваться электрон и его античастица позитрон.

фотоном, излучаемым на самом деле электроном, либо этот фотон в реальности является электроном, который либо пересек ВД и не оставил трека, либо был неверно идентифицирован как конверсионный фотон. Отношение числа событий $e\gamma$ и ee представляет собой частоту неверной идентификации, когда электрон реконструируется и идентифицируется фотоном(1). Для того, чтобы снизить возможное загрязнение числа событий ee и $e\gamma$ от фона $W(\to e\nu)\gamma$, было наложено требование на потерянный поперечный импульс в событиях быть менее 40 ГэВ.

2.1. ИССЛЕДОВАНИЕ ЗАВИСИМОСТИ ЧАСТОТЫ НЕВЕРНОЙ ИДЕНТИФИКАЦИИ ОТ РЕГИОНА ФАЗОВОГО ПРОСТРАНСТВА.

Частота неверной идентификации зависит от псевдобыстроты и поперечного импульса фотона. Для учета этих зависимостей оценка проводилась в трех регионах: центральном регионе ($|\eta| < 1.37$) с $p_T < 250$ ГэВ и с $p_T > 250$ ГэВ и в переднем регионе ($1.52 < |\eta| < 2.37$) (Рис. 2.1, 2.2, 2.3).

Рисунок 2.1 — Зависимость частоты неверной идентификации электрона как фотона от псевдобыстроты фотона

Рисунок 2.2 — Зависимость частоты неверной идентификации от энергии фотона для центрального региона по псевдобыстроте

Рисунок 2.3 — Зависимость частоты неверной идентификации от энергии фотона для переднего региона по псевдобыстроте

2.2. ОЦЕНКА КОЛИЧЕСТВА ФОНА В РАСПРЕДЕЛЕНИИ ПО ИНВАРИАНТНОЙ МАССЕ ЭЛЕКТРОНА И ФОТОНА.

Источником отбираемых пар ee и $e\gamma$, помимо событий распада $Z(\to ee)$, могут быть другие фоновые процессы. В таком случае, для улучшения оценки частоты неверной идентификации необходимо вычитание этого фона:

$$rate_{e \to \gamma} = \frac{N_{e\gamma} - N_{bkg}}{N_{ee} - N_{bkg}},\tag{2.2}$$

Рисунок 2.4 — Распределени
t инвариантной массы электрона и фотона в центральном регионе по псевдобыстроте,
при условии что, поперечный импульс фотона меньше 250 ГэВ

Рисунок 2.5 — Распределени
t инвариантной массы электрона и фотона в центральном регионе по псевдобыстроте,
при условии что, поперечный импульс фотона больше 250 ГэВ

Рисунок 2.6 — Распределениt инвариантной массы электрона и фотона в переднем регионе по псевдобыстроте

Рисунок 2.7 — Распределени
t инвариантной массы электрона и фотона в центральном регионе по псевдобыстроте,
при условии что, поперечный импульс фотона меньше 250 ГэВ

Рисунок 2.8 — Распределени
t инвариантной массы электрона и фотона в центральном регионе по псевдобыстроте,
при условии что, поперечный импульс фотона больше 250 ГэВ

Рисунок 2.9 — Распределениt инвариантной массы электрона и фотона в переднем регионе по псевдобыстроте

2.2.1. ОПИСАНИЕ ФОРМЫ СИГНАЛА В МОНТЕ-КАРЛО

Для наиболее точной оценки числа фоновых событий, то есть событий не от распада Z-бозона, в интервале инвариантных масс 80-100 ГэВ, необходимо сделать вывод о форме распределения инвариантной массы пар ee и $e\gamma$, рожденных в распаде Z-бозона.

Для этого проводилось фитирование в данных Монте-Карло симуляции процесса $Z(\to ee)$. В качестве фитирующей функции выбирался Воигтиан[10].

Воигтиан представляет собой свертку распределений Гаусса и Брейта-Вигнера и учитывает естественную ширину распада Z-бозона и разрешение детектора:

$$Voigtian(E, M, \Gamma, \sigma) = \int_{-\infty}^{+\infty} Gauss(x, M, \sigma) BreitWigner(E - x, M, \Gamma) dx$$
(2.3)

Рисунок 2.10 — Результат фитирования Воигтианом распределения инвариантной массы двух электронов в центральном регионе по псевдобыстроте,при условии что, поперечный импульс фотона меньше 250 ГэВ

Рисунок 2.11 — Результат фитирования Воигтианом распределения инвариантной массы двух электронов в центральном регионе по псевдобыстроте,при условии что, поперечный импульс фотона больше 250 ГэВ

Рисунок 2.12 — Результат фитирования Воигтианом распределения инвариантной массы двух электронов в переднем регионе по псевдобыстроте

Рисунок 2.13 — Результат фитирования Воигтианом распределения инвариантной массы электрона и фотона в центральном регионе по псевдобыстроте,при условии что, поперечный импульс фотона меньше 250 ГэВ

Рисунок 2.14 — Результат фитирования Воигтианом распределения инвариантной массы электрона и фотона в центральном регионе по псевдобыстроте,при условии что, поперечный импульс фотона больше 250 ГэВ

Рисунок 2.15 — Результат фитирования Воигтианом распределения инвариантной массы электрона и фотона в переднем регионе по псевдобыстроте

2.2.2. ФИТИРОВАНИЕ РАСПРЕДЕЛЕНИЯ ИНВАРИАНТНОЙ МАССЫ ЭЛЕКТРОНА И ФОТОНА

Для оценки числа фоновых событий в распределении инвариантной массы $e\gamma$ производилось фитирование суммой двух функций - Воигтиана и прямой. Площадь под прямой, отнесенная к ширине бина, есть число фоновых событий.

Рисунок 2.16 — Результат фитирования сигнала и фона в распределении инвариантной массы двух электронов в центральном регионе по псевдо-быстроте,при условии что, поперечный импульс фотона меньше 250 ГэВ

Рисунок 2.17 — Результат фитирования сигнала и фона в распределении инвариантной массы двух электронов в центральном регионе по псевдобыстроте,при условии что, поперечный импульс фотона больше 250 ГэВ

Рисунок 2.18 — Результат фитирования сигнала и фона в распределении инвариантной массы двух электронов в переднем регионе по псевдобыстроте

2.2.3. ФИТИРОВАНИЕ РАСПРЕДЕЛЕНИЯ ИНВАРИАНТНОЙ МАССЫ ДВУХ ЭЛЕКТРОНОВ

Фон в распределении инвариантной массы ее распределен более сложным немонотонным образом. Оценка формы фона производилась раздельным фитированием суммой полинома третьей степени и Воигтиана в

интервалах 30-80 и 100-150 ГэВ 2 (Рис. 2.20, 2.19, 2.23, 2.22, 2.26, 2.25). При фитировании параметры воигтиана Г, M, σ были взяты из результатов фитирования тех же распределений в Монте-Карло (Табл. 2.1). Полиномы полученные в результате фитирования экстраполировались в область 80-100 ГэВ(Рис. 2.21, 2.24, 2.27). Тогда число фона в интервале 80-100 ГэВ оценивается по формуле:

$$\bar{N}_{bkg} = \frac{N_{bkgmax} + N_{bkgmin}}{2}$$
, где $\Delta N_{bkg} = \frac{N_{bkgmax} - N_{bkgmin}}{2}$ (2.4)

Максимальное и минимальное значение фона вычислялось, как интеграл под «максимальной» и «минимальной» кривой³, деленный на ширину бина. В качестве "минимальной" кривой выбрана прямая соединяющая точки с абсциссами 80 и 100 ГэВ исходя из факта возрастания фона в окрестности 80 ГэВ и убывания в окрестности 100 ГэВ и предположения отсутствия минимума на интервале 80-100 ГэВ. В качестве максимальной кривой выбирается полином, покрывающий максимальную площадь под собой.

Ввиду затруднительности фитирования включая пик 4 , как это было сделано в распределении инвариантной массы $e\gamma$, такая оценка, благодаря фитированию близко к пику, позволяет оценить число фоновых событий, хоть и с большой погрешностью.

	$ \eta < 1.37,$	$ \eta < 1.37,$	$1.52 < \eta < 2.37$
	$p_T < 250$ ГэВ	$p_T > 250 \; \Gamma$ эВ	
M, ГэВ	91.07	91.09	90.89
Г, ГэВ	3.185	3.172	3.439
σ , ГэВ	1.068	0.858	1.307

Таблица 2.1 — Параметры Воигти
ана полученные фитированием в Монте-Карло

 $^{^{2}}$ везде далее интервалы 30-80 ГэВ и 100-150 ГэВ будут именоваться левым и правым соответственно

 $^{^{3}}$ кривые с максимальной и минимальной площадью

 $^{^4}$ Сложность заключается в описании формы распределения фона непрерывной функцией

Рисунок 2.19 — Результат фитирования слева распределения инвариантной массы двух электронов в центральном регионе по псевдобыстроте,при условии что,поперечный импульс проб-электрона меньше 250 ГэВ.

Рисунок 2.20 — Результат фитирования справа распределения инвариантной массы двух электронов в центральном регионе по псевдобыстроте,при условии что,поперечный импульс проб-электрона меньше 250 ГэВ.

Рисунок 2.21 — Экстраполяция результатов фитирования распределения инвариантной массы двух электронов в центральном регионе по псевдобыстроте,при условии что,поперечный импульс проб-электрона меньше 250 ГэВ.

Рисунок 2.22 — Результат фитирования слева распределения инвариантной массы двух электронов в центральном регионе по псевдобыстроте,при условии что,поперечный импульс проб-электрона больше 250 ГэВ.

Рисунок 2.23 — Результат фитирования справа распределения инвариантной массы двух электронов в центральном регионе по псевдобыстроте,при условии что,поперечный импульс проб-электрона больше 250 ГэВ.

Рисунок 2.24 — Экстраполяция результатов фитирования распределения инвариантной массы двух электронов в центральном регионе по псевдо-быстроте,при условии что,поперечный импульс проб-электрона больше 250 ГэВ.

Рисунок 2.25 — Результат фитирования слева распределения инвариантной массы двух электронов в переднем регионе по псевдобыстроте.

Рисунок 2.26 — Результат фитирования справа распределения инвариантной массы двух электронов в переднем регионе по псевдобыстроте.

Рисунок 2.27 — Экстраполяция результатов фитирования распределения инвариантной массы двух электронов в переднем регионе по псевдобыстроте.

2.3. ОЦЕНКА СИСТЕМАТИЧЕСКИХ И СТАТИСТИЧЕСКИХ ОШИБОК

Можно выделить три источника систематической ошибки оценки частоты неверной идентификации электрона как фотона:

- Неопределенность выбора массового окна Z-пика. Оценка ошибки, связанной с этой неопределенностью проводилась вариацией ширины массового окна в большую и меньшую стороны на одно стандартное отклонение от числа событий внутри этого окна. При этом, вариация проводилась одновременно в наборах пар ее и еү так, чтобы ширина массового окна была одинакова для пар ее и еү. Для избежания влияния комбинаторного фона, вычисления проводились на данных Монте-Карло. Абсолютная погрешность частоты неверной идентификации вычислялась, как разница между частотой до вариации и частотой неверной идентификации после вариации ширины массового окна. Причем из вариаций массового окна в большую и меньшую сторону, выбиралась та, при которой частота неверной идентификации максимально отклонялась от частоты до вариации. Результаты оценки погрешности, связанной с выбором массового окна приведены в таблице 2.4.
- Неопределенность оценки числа событий комбинаторного фона под Z-пиком. В распределении инвариантной массы пар ee эта ошибка главным образом определяется разницей между максимально возможным и минимально возможным числом фоновых событий под Z-пиком. В распределении инвариантной массы пар $e\gamma$ ошибка определяется погрешностью вычисления площади под прямой, описывающей комбинаторный фон, которая вычисляется с учетом погрешности определения параметров прямой и корреляции этих параметров. Результаты оценки погрешности, связанной с вычитанием фона, представлены в таблице 2.2.
- Ошибка самого метода, оцениваемая как абсолютная разность между «истинной частотой неверной идентификации» и «измеряемой частотой неверной идентификации» в $Z(\to ee)$ МС. Оценка «истинной

частоты» осуществлялась путём установки отборов на тип и происхождение частицы на «истинном» уровне Монте-Карло. Электроны из пар ee и $e\gamma$ были проверены с помощью пакета «MCTruthClassifier» на наличие связи с изолированным электроном (truth type 2), происходящим от Z-бозона (truth origin 13). Фотон из пар $e\gamma$ должен быть ассоциирован с изолированным (truth type 2) электроном или с излучением в конечном состоянии (truth type 15), происходящим из Z-бозона (truth origin 13) или от излучения в конечном состоянии (truth origin 40) соответственно. Тогда, «истинная частотой неверной идентификации» есть отношение отобранных таким образом пар ee и $e\gamma$. Результаты сравнения «истинной» и «измеряемой» частоты неверной идентификации представлены в таблице 2.3.

Статистическая ошибка частоты неверной идентификации определялась числом событий в массовом окне Z-пика. Результирующие значения статистических и систематических погрешностей представлены в таблице 2.5.

	N	N_{bkg}	ΔN_{bkg}	$\delta_{syst.}(\nu_{e \to \gamma}), \%$
$ ee, \eta < 1.37,$	85569	3820	1595	1.95
$p_T < 250$ ГэВ				
$ ee, \eta < 1.37,$	14825	404	149	1.03
$p_T > 250$ ГэВ				
$ ee, 1.52 < \eta < 2.37$	25166	1536	722	3.05
$e\gamma$, $ \eta < 1.37$,	1927	257	5	0.30
$p_T < 250$ ГэВ				
$e\gamma$, $ \eta < 1.37$,	281	29.71	0.02	0.08
$p_T > 250$ ГэВ				
$e\gamma$, 1.52 < $ \eta $ < 2.37	1490	101.1	0.7	0.05

Таблица 2.2 — Результаты вычислений количества фоновых событий и соответствующего вклада в систематическую погрешность для каждой рассматриваемой области по η и p_T

	$ \eta < 1.37,$	$ \eta < 1.37,$	$1.52 < \eta < 2.37$
	$p_T < 250$ ГэВ	$p_T > 250$ ГэВ	
Оценка	«измеряемой» част	готы неверной иден	тификации
N_{ee}	81484.1	14033.7	25558.5
$N_{e\gamma}$	1482.21	246.112	1385.43
$\nu_{e \to \gamma}, \%$	1.81902	1.75372	5.42063
Оценк	а «истинной» часто	оты неверной идент	ификации
N_{ee}	144968	28167.5	46474.7
$N_{e\gamma}$	2557.88	560.172	2738.51
$ u_{e \to \gamma}, \% $	1.76445	1.98872	5.89248
$\Delta(\nu_{e\to\gamma}),\%$	$54.57 \cdot 10^{-3}$	$235 \cdot 10^{-3}$	$471.85 \cdot 10^{-3}$
$\delta_{syst.}(\nu_{e\to\gamma}),\%$	3.09	13.4	8.70

Таблица 2.3 — Результаты оценки погрешности самого метода и оценки соответствующего вклада в систематическую ошибку для каждой рассматриваемой области по η и p_T

	$ \eta < 1.37,$	$ \eta < 1.37,$	$1.52 < \eta < 2.37$
	$p_T < 250$ ГэВ	$p_T > 250$ ГэВ	
N_{ee}	82165.8	14024.2	26786.2
$N_{e\gamma}$	1482.21	246.112	1385.43
σ_{ee}	762.778	55.5789	117.002
$\sigma_{e\gamma}$	25.9779	7.12257	24.3098
$\nu_{e \to \gamma}, \%$	1.80393	1.75492	5.17219
$N_{ee} + \sigma$	83404.5	14372.9	27290.7
$N_{e\gamma} + \sigma$	1508.95	253.236	1410.65
$\nu_{e \to \gamma}, \%$	1.80918	1.76190	5.169
$\Delta(\nu_{e\to\gamma}),\%$	$5.25719 \cdot 10^{-3}$	$6.98795 \cdot 10^{-3}$	$3.19439 \cdot 10^{-3}$
$\delta_{syst.}(\nu_{e\to\gamma}),\%$	0.291431	0.398193	0.0617609
$N_{ee} - \sigma$	80745.7	13649.5	26130.1
$N_{e\gamma} - \sigma$	1453.62	238.895	1360.75
$\nu_{e \to \gamma}, \%$	1.80025	1.75021	5.20761
$\Delta(\nu_{e \to \gamma}), \%$	$3.679 \cdot 10^{-3}$	$4.70092 \cdot 10^{-3}$	$35.4159 \cdot 10^{-3}$
$\delta_{syst.}(\nu_{e \to \gamma}), \%$	0.20392	0.267872	0.684738

Таблица 2.4 — Результаты вариации массового окна и оценки соответствующего вклада в систематическую погрешность для каждой рассматриваемой области по η и p_T

	$ \eta < 1.37,$	$ \eta < 1.37,$	$1.52 < \eta < 2.37$
	$p_T < 250$ ГэВ	$p_T > 250$ ГэВ	
	Статистически	е погрешности	
N_{ee}	85569	14825	25166
$N_{ee} \ \delta_{N_{ee}stat}, \%$	0.34	0.82	0.63
$N_{e\gamma}$	1927	281	1490
$\delta_{N_{ee}stat},\%$	2.28	5.97	2.59
$\delta_{total\ stat},\%$	2.31	6.03	2.67
Систематические погрешности			
$\delta_{Background\ syst},\%$	1.97	1.03	3.05
$\delta_{Mass\ window\ syst},\%$	0.29	0.40	0.68
$\delta_{Method\ syst},\%$	3.09	13.40	8.70
$\delta_{total\ syst},\%$	3.68	13.44	9.24

Таблица 2.5 — Статистические и систематические погрешности для каждой рассматриваемой области по η и p_T

Регион	$\nu_{e \to \gamma} \pm \Delta_{stat} \pm \Delta_{syst}\%$
$ \eta < 1.37,$	$2.04 \pm 0.05 \pm 0.08$
$p_T < 250$ ГэВ	
$ \eta < 1.37,$	$1.74 \pm 0.11 \pm 0.23$
$p_T > 250$ ГэВ	
$ 1.52 < \eta < 2.37$	$5.88 \pm 0.16 \pm 0.54$

Таблица 2.6 — Результаты оценки частоты неверной идентификации электрона как фотона для каждой рассматриваемой области по η и p_T с учетом статистических и систематических погрешностей

ЗАКЛЮЧЕНИЕ

Целью работы было получение оценки частоты неверной идентификации электронов как фотонов в процессе ассоциированного рождения Zбозона с изолированным фотоном и двумя струями. Для достижения цели были решены следующие задачи:

- Освоены базовые принципы отбора событий, основанного на установке пределов на кинематические переменные для улучшения идентификации искомого процесса;
- Получена оценка частоты ложной идентификации электрона как фотона в процессе $Z(\nu\nu)\gamma jj$;
- Оценена статистическая погрешность частоты ложной идентификации для трёх регионов по псевдобыстроте и энергии;
- Оценена систематическая погрешность частоты ложной идентификации для трёх регионов по псевдобыстроте и энергии. Были рассмотрены 3 источника погрешности:
 - 1) Ошибка, связанная с произвольностью в выборе массового окна;
 - 2) Ошибка, связанная с произвольностью с оценкой числа событий комбинаторного фона под Z-пиком;
 - 3) Ошибка, связанная с несовершенством самого метода.

В дальнейшем результаты работы будут использованы для улучшения оценки систематических погрешностей процесса ложной идентификации электрона как фотона при совместном рождении Z-бозона с фотоном и двумя струями.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1. *Вайнберг С.* Космология. Книжный дом ЛИБРОКОМ, 2013. с. 603.
- 2. *Емельянов В. М.* Стандартная модель и ее расширения. Физматлит, 2007.-c.~584.
- 3. Langacker P. The standard model and beyond. Series in High Energy Physics, 2010. c. 663.
- 4. Lykken J. D. Beyond the Standard Model. 2010. arXiv: 1005.1676 [hep-ph].
- 5. Production of single W bosons at LEP and measurement of WW gauge coupling parameters / P. Achard [и др.] // Physics Letters B. 2002. т. 547, № 3/4. с. 151—163. ISSN 0370-2693.
- 6. Measurement of the WW Production Cross Section in pp^- collisions at $\sqrt{s} = 1.96$ TeV // Phys.Rev.Lett., 94(15):151801. 2005.
- 7. Iglesias L. Diboson production at the LHC // PoS LHCP2016 pp.022. https://cds.cern.ch/record/2276624, 2016. c. 14.
- 8. ATLAS detector and physics performance : Technical Design Report, 1 : тех. отч. Geneva:CERN, 1999. с. 460.
- 9. *Manzoni S.* Electron-to-photon fake rate measurements Supporting documentation for the paper Photon identification in 2015+2016 ATLAS data // ATL-COM-PHYS-2017-1277. https://cds.cern.ch/record/2280801, 2017. c. 460.
- 10. Temme N. M. NIST Handbook of Mathematical Functions. SBN 978-0-521-19225-5, MR 2723248 : Cambridge University Press, 2010.