МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ЯДЕРНЫЙ УНИВЕРСИТЕТ «МИФИ» (НИЯУ МИФИ)

ИНСТИТУТ ЯДЕРНОЙ ФИЗИКИ И ТЕХНОЛОГИЙ КАФЕДРА №40 «ФИЗИКА ЭЛЕМЕНТАРНЫХ ЧАСТИЦ»

УДК 531.3, 539.1.05

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА К БАКАЛАВРСКОЙ ДИПЛОМНОЙ РАБОТЕ МОДЕЛИРОВАНИЕ ВЗАИМОДЕЙСТВИЯ "ТЁМНЫХ" АТОМОВ *ОНе* С ЯДРАМИ БАРИОННОГО ВЕЩЕСТВА

Студент	 Т. Э. Бикбаев
Научный руководитель,	
д.фм.н., проф.	 М. Ю. Хлопов
Научный консультант,	
к.фм.н., доц.	 А. Г. Майоров

ВЫПУСКНАЯ КВАЛИФИКАЦИОННАЯ РАБОТА БАКАЛАВРА

МОДЕЛИРОВАНИЕ ВЗАИМОДЕЙСТВИЯ "ТЁМНЫХ" АТОМОВ *ОНе* С ЯДРАМИ БАРИОННОГО ВЕЩЕСТВА

Студент	Т. Э. Бикбаев
Научный руководитель,	
д.фм.н., проф.	М. Ю. Хлопов
Научный консультант,	
к.фм.н., доц.	А. Г. Майоров
Рецензент,	
к.фм.н., доц.	В. А. Гани
Секретарь ГЭК,	
к.фм.н.	А. А. Кириллов
Зав. каф. №40,	
д.фм.н., проф.	М. Д. Скорохватов

ΡΕΦΕΡΑΤ

Отчет 30 с., 1 кн., 8 рис., 23 источн.

СКРЫТАЯ МАССА, "ТЁМНАЯ"МАТЕРИЯ, "ТЁМНЫЙ"АТОМ, *ОНЕ*, *О*-ГЕЛИЙ, АЛЬФА-ЧАСТИЦА, ЧАСТИЦА *О*⁻⁻, БАРИОННОЕ ВЕЩЕСТВО, СВЯЗАННАЯ СИСТЕМА, ЭФФЕКТИВНЫЙ ПОТЕНЦИАЛ, ЧИСЛЕННОЕ МОДЕЛИРОВАНИЕ

Объектом исследования является система трёх тел, состоящая из ядра барионного вещества и атома *OHe* скрытой массы.

Цель работы — построение численной модели взаимодействия "тёмного" атома *OHe* с ядрами барионного вещества. Для достижения цели проводится исследование механизмов взаимодействия частицы *O*⁻⁻, ядра *He* и ядра-мишени

Результатом работы является численная модель, описывающая систему OHe-ядро с учётом ядерного и электромагнитного взаимодействий и позволяющая для разных условий взаимодействия восстановить траектории всех частиц, в том числе O^{--} и He.

Полученная модель может быть использована для интерпретации результатов экспериментов по прямому поиску частиц скрытой массы.

СОДЕРЖАНИЕ

Введ	цение		4	
I.	"Тёмн	ые" атомы OHe	6	
II.	Численное моделирование взаимодействия ОНе с ядром барионного			
	вещест	гва	10	
	1.	Моделирование ОНе. Система координат системы ОНе –ядро.	10	
	2.	Кулоновское взаимодействие в системе ОНе –ядро	16	
	3.	Ядерное взаимодействие в системе ОНе –ядро	20	
	4.	Учёт конечного размера ядер	21	
III.	Дальн	ейшие перспективы моделирования	23	
Закл	пючени	e	25	
Спи	сок лит	ературы	27	

ВВЕДЕНИЕ

Одной из фундаментальных физических проблем нашего времени остаётся проблема скрытой массы, которая составляет примерно 25% от всей плотности энергии Вселенной и доминирует в формах её нерелятивистского вещества. Общая проблема скрытой массы состоит из двух частей, которые изучаются в двух научных направлениях: в космологии и астрофизике.

Согласно современной астрономии и физике элементарных частиц, скрытая масса является небарионной и связана с ещё недостаточно изученной и, по сути, неизвестной для нас физикой. Если она состоит из частиц, то они предсказываются вне рамок Стандартной модели. Для того, чтобы эти частицы могли рассматриваться в качестве кандидатов на роль скрытой массы, формирующей крупномасштабную структуру Вселенной, они должны удовлетворять некоторому набору условий: они должны быть стабильными, должны обеспечивать измеренную плотность скрытой массы и отделиться от плазмы и излучения, по крайней мере до начала стадии доминирования вещества и др [1; 2]. Самым простым способом удовлетворить вышеперечисленным условиям является предположение о существовании нейтральных, элементарных, слабовзаимодействующих частиц – WIMP-ов (от английского WIMP, Weakly Interacting Massive Particle). Однако, результаты поиска WIMP-ов являются противоречивыми и имеющаяся неопределённость в выборе "тёмных" частиц породила множество разнообразных теорий, предлагающих на роль кандидатов скрытой массы различные объекты [3; 4; 5; 6]. В этих теориях новые стабильные частицы могут обладать некоторой новой фундаментальной симметрией и соответствующим ей сохраняющимся зарядом [5; 7; 8].

Важной проблемой для сценариев гипотетических, стабильных, электрически заряженных частиц является их отсутствие в окружающем нас веществе. Если они существуют, то должны быть связаны с обычным веществом и образовывать аномальные изотопы (с аномальным отношением Z/A). Основная трудность для этих сценариев состоит в подавлении обилия положительно заряженных частиц, связанных с электронами, которые ведут себя как аномальные изотопы водорода или гелия. Серьезные экспериментальные ограничения на такие изотопы, особенно на аномальный водород, очень жёстко ограничивают возможность стабильных положительно заряженных частиц [9]. Эта проблема также неразрешима, если модель предсказывает стабильные частицы с зарядом -1 (E^-). Так как появившийся в первичном нуклеосинтезе гелий не захватывает две частицы E^- , потому что их масса порядка ТэВ и реалистическая модель приводит к тому, что их концентрация на несколько порядков меньше, чем концентрация первичного гелия. Следовательно, как только первичный гелий образуется в космологическом нуклеосинтезе, он захватывает все свободные E^- частицы образуя положительно заряженные (HeE)⁺-ионы [10]. Это предотвращает любое дальнейшее подавление обилия положительно заряженных частиц. Поэтому, чтобы избежать перепроизводства аномальных изотопов, стабильные частицы с зарядом -1 должны отсутствовать [11]. В связи с чем стабильные отрицательно заряженные частицы могут иметь только заряд -2 – будем обозначать их O^{--} (в общем случае -2n, где n – любое натуральное число).

В данной работе рассматривается сценарий составной скрытой массы, в которой гипотетические стабильные частицы O^{--} избегают экспериментального открытия, потому что они формируют с первичным гелием нейтральные атомоподобные состояния OHe, взаимодействующие с окружающим веществом и называемые "тёмными" атомами (рисунок 1) [12]. Поскольку все эти модели также предсказывают соответствующие +2 зарядовые античастицы, космологический сценарий должен обеспечить механизм их подавления, что, естественно, может иметь место в зарядово-асимметричном случае, соответствующем избытку -2 заряженных частиц O^{--} . Тогда их положительно заряженные античастицы могут эффективно аннигилировать в ранней Вселенной. Существуют различные модели, в которых предсказываются такие стабильные -2 заряженные частицы [13; 14; 15].

Рисунок 1: Иллюстрация "тёмного" атома ОНе и внешнего ядра вещества А

I. "Тёмные" атомы OHe

В разделе рассматриваются характеристики и свойства "тёмных" атомов *OHe*. Под "тёмным" атомом понимается связанная система между частицей *O⁻⁻* и ядром ⁴*He*. Энергия связи *OHe* для точечного заряда ⁴*He* вычисляется по следующей формуле:

$$I_0 = \frac{Z_{O^{--}}^2 Z_{He}^2 \alpha^2 m_{He}}{2} \approx 1.6 \text{ M} \Im B$$
(1)

где α – это постоянная тонкой структуры, $Z_{O^{--}}$ и Z_{He} – электрические заряды частицы O^{--} и ядра He соответственно, $m_{He} \approx 3.73$ ГэВ – масса альфа-частицы.

Для того, чтобы иметь представление о размерах рассматриваемых атомов скрытой массы приведём значение боровского радиуса вращения *He* в "тёмных" атомах *OHe*, который вычисляется по следующей формуле [16]:

$$R_b = \frac{\hbar c}{Z_{O^{--}} Z_{He} m_{He} \alpha} \approx 2 \cdot 10^{-13} \text{ cm}$$
⁽²⁾

Такие связанные состояния могли образовываться в промежуток времени от 100 до 300 секунд после образования Вселенной и при энергиях 100 кэВ $\geq T \geq$ $T_0 = \frac{I_0}{27} \approx 60$ кэВ, когда ядра ⁴*He* формируются в первичном нуклеосинтезе, после чего начинается экранировка заряженных частиц O^{--} в составных (⁴*He*⁺⁺ O^{--}) "тёмных" атомах [17]. Во всех моделях O-гелия O^{--} ведет себя как лептон или как специфический кластер тяжелых кварков новых семейств с подавленным адронным взаимодействием [18]. Поэтому сильное взаимодействие OHe с веществом определяется только ядерным взаимодействием He. Масса частицы O^{--} , $m_{O^{--}}$, является свободным параметром модели. Однако, экспериментальный поиск на LHC стабильных дважды заряженных частиц даёт ограничение на эту массу больше 1ТэВ. Эти нейтральные первичные ядерно-взаимодействующие объекты, то есть "тёмные" атомы OHe, обеспечивают современную плотность нерелятивистского вещества и играют роль нетривиальной формы сильно взаимодействующей скрытой массы. Активное влияние этого типа скрытой массы на ядерные превращения требует специальных исследований и развития ядерной физики O-гелия. Это особенно важно для количественной оценки роли "тёмных" атомов в первичном космологическом нуклеосинтезе и в эволюции звезд [16].

Привлекательной чертой модели OHe является то, что она включает в себя только один параметр "новой" физики – массу O^{--} . Но в то же время, она требует глубокого понимания деталей известной ядерной и атомной физики, знания которых не применялись в отношении неклассических связанных систем в виде "тёмных" атомов OHe [19].

Важность гипотезы *O*-гелия состоит также в том, что она может объяснить противоречивые результаты прямого поиска скрытой массы, за счет специфики взаимодействия "тёмных" атомов с веществом подземных детекторов. А именно, положительные результаты по обнаружению частиц скрытой массы в таких экспериментах, как *DAMA/NaI* и *DAMA/LIBRA*, которые вступают в кажущееся противоречие со всеми остальными экспериментами, например с *XENON*100, *LUX*, *CDMS*, дающими отрицательный результат [20].

Дело в том, что замедление космического *OHe* в земном грунте не допускает прямых методов обнаружения частиц скрытой массы основанных на поиске эффектов отдачи ядер при столкновениях WIMP-ов с ядрами обычного вещества. Однако, взаимодействие медленных атомов *O*-гелия с ядрами может приводить к их низкоэнергетическому связыванию. В пределах неопределенности параметров ядерной физики существует диапазон, в котором энергия связи в системе *OHe* – *Na* находится в интервале 2-4 кэВ [4; 21]. Захват "тёмных" атомов в это связанное состояние приводит к соответствующему выделению энергии, наблю-

даемому как ионизационный сигнал в детекторе DAMA. Концентрация OHe в веществе подземных детекторов определяется равновесием между поступающим космическим потоком атомов скрытой массы и их диффузией к центру Земли. Наличие О-гелия в земном грунте быстро регулируется за счёт кинематики взаимодействия "тёмных" атомов с веществом, с учетом поступающего космического *ОНе* и следует за изменением этого потока. Поэтому скорость захвата "тёмных" атомов должна испытывать годовые модуляции, отраженные в годовых модуляциях ионизационного сигнала от этих реакций. Неизбежным следствием предложенного объяснения является появление в веществе детектора DAMA/NaI или DAMA/LIBRA аномальных сверхтяжелых изотопов натрия, масса которых примерно на порядок больше, чем у обычных изотопов этих элементов. А появление аномальных сверхтяжелых изотопов йода маловероятно, потому что из расчётов следует, что для атомов О-гелия невыгодно образовывать низкоэнергетические связыванные состояния с этими ядрами [16]. Если атомы этих аномальных изотопов не полностью ионизованы, их подвижность определяется атомными сечениями и становится примерно на 9 порядков меньше, чем для ОНе [16]. Это обеспечивает их сохранение в детекторе. Поэтому масс-спектроскопический анализ этого вещества может обеспечить дополнительную проверку на наличие Огелиевой природы сигнала *DAMA*. Методы такого анализа должны учитывать хрупкую природу связанных состояний OHe - Na, поскольку их энергия связи составляет всего несколько кэВ [17; 19].

Столкновения атомов скрытой массы с веществом, частота которых растет в областях с более высокой концентрацией *OHe*, особенно в центральной части Галактики, могут привести к возбуждениям *O*-гелия. Таким образом наблюдаемый *INTEGRAL* избыток позитронной линии аннигиляции в центральной части галактики можно объяснить образованием пар, излучаемых возбуждёнными в результате столкновений "тёмными" атомами *OHe* [19; 22].

Одной из главных проблем "тёмных" атомов *OHe* является то, что их составляющие могут слишком сильно взаимодействовать с обычным веществом. Это происходит потому что *O*-гелий хоть и нейтрален, но априори обладает неэкранированным ядерным притяжением к внешним ядрам вещества, что может привести к разрушению связанной системы атомов скрытой массы и образованию аномальных изотопов. В свою очередь, на концентрацию этих изотопов в земном грунте и морской воде имеются очень сильные экспериментальные ограничения [9]. Чтобы избежать этой проблемы, предполагается, что эффективный потенциал между *OHe* и ядром вещества будет иметь барьер, предотвращающий попадание *He* и/или *O⁻⁻* в ядро. В этих условиях, из-за кулоновского взаимодействия "тёмных" атомов с веществом, доминируют процессы упругого рассеяния, что является ключевым для гипотезы *O*-гелия.

В данной исследовательской работе приводится описание выполненного численного моделирования взаимодействия "тёмных" атомов *O*-гелия с ядрами барионного вещества с целью выявления условий существования их низкоэнергетического связанного состояния. В рамках предложенного подхода к такому моделированию, для выявления сущности процессов ядерного взаимодействия *OHe* с ядрами барионного вещества, в основе подхода используется классическая модель, куда постепенно вводятся эффекты квантовой физики.

II. Численное моделирование взаимодействия *ОНе* с ядром барионного вещества

1. Моделирование *ОНе*. Система координат системы *ОНе* – ядро.

Для моделирования "тёмного" атома O-гелия была рассмотрена система OHe, состощая из двух точечных, связанных частиц: ядра атома He и частицы O^{--} . Была введена сферическая система координат, в начале которой подразумевается частица O^{--} , а вокруг неё по поверхности сферы, радиус которой равен радиусу атома $OHe R_b$ (см. формулу (2)) или, что эквивалентно, боровскому радиусу альфа-частицы в системе OHe, движется стохастически, с постоянной скоростью V_{α} ядро атома He. Скорость V_{α} равна:

$$V_{\alpha} = \frac{\hbar c^2}{m_{He} R_b} \approx 3.02 \cdot 10^4 \frac{\text{CM}}{\text{c}} \tag{3}$$

Первоначальной задачей в моделировании взаимодействия OHe с ядром барионного вещества являлось построение численной модели O-гелия, которая позволит описать движение альфа-частицы вокруг частицы O^{--} . Чтобы после совместить эту численную модель с основной, в которой будет моделироваться движение и взаимодействие атома скрытой массы с ядром барионного вещества в лабораторной системе отсчёта с расположенным в начале координат соответствующим ядром-мишенью вещества.

Рассмотрим каким образом производилось моделирование системы *OHe* (см. Рисунок 2).

У альфа-частицы, в связанной системе OHe, только две независимые степени свободы, в качестве которых берутся полярный и азимутальный углы. С помощью них через проекции R_b выражаются её декартовы координаты, то есть компоненты радиус-вектора в каждый момент времени, чтобы с помощью них построить траекторию движения альфа-частицы. Поэтому на рисунке 2 под определяемыми матрицами понимаются все необходимые для описания движения альфа-чатицы величины, то есть её полярный ϕ и азимутальный θ углы, а также изменение этих углов($d\phi$ и $d\theta$) и компоненты радиус-вектора r.

Рисунок 2: Блок-схема моделирования системы ОНе

Под ϕ_0 и θ_0 на рисунке 2 понимаются начальные значения углов, через которые вычисляются начальные компоненты радиус-вектора альфа-частицы r_0 .

Изменения полярного d ϕ и азимутального d θ углов определяются следующим образом:

$$d\theta = \left(\frac{V_{\alpha}dt}{R_b}\right) \left(2rand - 1\right) \tag{4}$$

$$d\phi = \frac{\sqrt{\left(\frac{V_{\alpha}dt}{R_b}\right)^2 - \left(d\theta\right)^2}}{\cos(\theta)} \left(2rand - 1\right)$$
(5)

где *rand* - это случайная величина с равномерным распределением на отрезке от 0 до 1.

Под условием на рисунке 2 подразумевается следующее неравенство:

$$\left(d\theta\right)^2 + \left(\cos\theta d\phi\right)^2 \le \left(\frac{V_{\alpha}dt}{R_b}\right)^2 \tag{6}$$

Физический смысл этого условия в том, что квадрат расстояния пройденного альфа-частицей за время dt по поверхности сферы радиуса R_b с постоянной скоростью V_{α} не может быть меньше суммы квадратов расстояний, пройденных за то же время по поверхности сферы того же радиуса с той же скоростью в полярном и азимутальном направлениях. По сути – это неравенство треугольника на поверхности сферы.

В общем, из рисунка 2 понятно, что в каждой итерации цикла определяются изменения полярного и азимутального углов, которые прибавляются к их старым значениям (ϕ_i и θ_i) и с помощью полученных новых углов (ϕ_{i+1} и θ_{i+1}) вычисляются следующие компоненты радиус-вектора альфа-частицы r_{i+1} .

В итоге, по полученным данным, записанным в матрицу, содержащую значения компонентов радиус-вектора альфа-частицы в каждый момент времени r, программа строит её траекторию движения по поверхности сферы боровского радиуса R_b (рисунок 3). На рисунке 3 показана сфера радиуса R_b , на поверхности которой красными точками отмечено расположение альфа-частицы между моментами времени dt. Заполнение сферы точками зависит от количества итераций цикла, то есть при слишком большом их количестве сфера будет плотно заполнена точками.

Рисунок 3: Плотность распределения координат альфа-частицы на поверхности сферы боровского радиуса R_b

Прежде чем начать моделирование системы *OHe* и ядра барионного вещества с учётом всех сил, действующих между частицами, то есть моделирование взаимодействия трёх тел, рассмотрим систему координат для системы *OHe*–ядро.

Система OHe-ядро состоит из трёх заряженных, точечных, на данном этапе моделирования, частиц, в которой к одной "закреплённой" в начале координат частице движется связанная система двух других частиц. Под частицей в начале координат подразумевается ядро-мишень барионного вещества, а под движущимися частицами понимаются альфа-частица(He) и частица O^{--} . При этом альфачастица вращается по боровскому радиусу R_b вокруг частицы O^{--} .

Для того, чтобы описать траектории движения альфа-частицы и частицы O^{--} рассмотрим сферическую систему координат с точечным ядром-мишенью A в начале системы координат. В ней вводится радиус-вектор (см. рисунок 4) частицы O^{--} \vec{r} и радиус-вектор альфа-частицы \vec{r}_{α} . При этом:

$$\vec{r}_{\alpha} = \vec{r} + \vec{R}_b \tag{7}$$

Соответственно, для радиус-вектора альфа-частицы и частицы О⁻⁻ вводятся

полярные (ϕ_{α} и $\phi_{O^{--}}$) и азимутальные (θ_{α} и $\theta_{O^{--}}$) углы. Так же на рисунке 4 изображены вектор скорости частицы O^{--} , \vec{V} , угол между \vec{V} и горизонтальной прямой, α , и начальные координаты частицы O^{--} [X_0, Y_0, Z_0].

Рисунок 4: Система координат ОНе-ядро-мишень.

До перехода к описанию моделирования системы *OHe* и ядра барионного вещества с учётом взаимодействий между частицами, следует сказать, что можно построить эффективный потенциал между *O*-гелием и ядром барионного веще-

ства (см. рисунок 5). Этот потенциал включает в себя электромагнитное и ядерное взаимодействия. И задача моделирования как раз состоит в том, чтобы ввести эти взаимодействия, с целью воспроизвести численным методом эффекты этого потенциала.

Рисунок 5: Эффективный потенциал между *ОНе* и ядром барионного вещества [16]

2. Кулоновское взаимодействие в системе ОНе –ядро

На данном этапе моделирования рассматривается система трёх точечных, взаимодействующих друг с другом посредством кулоновских сил заряженных частиц, с приведённым выше выбором системы координат.

Между альфа-частицей и ядром-мишенью в рассматриваемой системе координат происходит кулоновское взаимодействие, определяемое силой:

$$\vec{F}^e_{\alpha} = \vec{F}^e_{\alpha}(\vec{r}_{\alpha}) = \frac{ZZ_{\alpha}e^2\vec{r}_{\alpha}}{r^3_{\alpha}},\tag{8}$$

где *е* – это элементраный электрический заряд, *Z* и *Z*_{*α*} = 2 – электрические заряды ядра-мишени и альфа-частицы соответственно.

Между частицей *О*⁻⁻ и ядром-мишенью существует кулоновское взаимодействие, определяемое силой:

$$\vec{F}_{ZO}^{e} = \vec{F}_{ZO}^{e}(\vec{r}) = \frac{ZZ_{O}e^{2}\vec{r}}{r^{3}},$$
(9)

где $Z_O = -2$ - это электрический заряд частицы O^{--} .

Задачей данного этапа было смоделировать взаимодействие, посредством кулоновских сил (8) и (9), в системе координат OHe-ядро, где движение ядра He в связанном состоянии OHe описывается согласно алгоритму приведённому в предыдущем разделе.

Моделирование производилось следующим образом (см. рисунок 6).

Под определяемыми матрицами на рисунке 6 понимаются все необходимые для описания движения альфа-чатицы и частицы O^{--} величины, то есть их полярные $(\phi_{\alpha} \ u \ \phi_{O^{--}})$ и азимутальные $(\theta_{\alpha} \ u \ \theta_{O^{--}})$ углы в системе координат OHe-ядромишень, полярный, ϕ , и азимутальный, θ , углы альфа-частицы в сферической системе координат с началом в частице O^{--} и их изменения $(d\phi \ u \ d\theta \ cm. \phi_{OMM})$ (4) и (5)). Определяются компоненты радиус векторов альфа-частицы и частицы $O^{--}(r_{\alpha} \ u \ r)$, приращение r, а также скорость частицы O^{--} , V, описанные выше силы, их компоненты и т.д.

Задаются следующие начальные условия: начальные координаты частицы O^{--} $[x_0, y_0, z_0]$ или r_0 и начальные компоненты её скорости $[V_{x_0}, V_{y_0}, V_{z_0}]$ или V_0 . После чего вычисляются начальные значения всех определённых выше матриц.

Рисунок 6: Блок-схема моделирования кулоновского взаимодействия в системе *ОНе* –ядро-мишень .

Перед условием 1 алгоритм определяет i-ое значение приращения импульса альфа-частицы dP_{α_i} :

$$dP_{\alpha_i} = F^e_{\alpha_i} dt \tag{10}$$

Под его физическим смыслом понимается то, что условием прекращения алгоритма программы является превышение переданной ядру He кинетической энергии dT над потенциалом ионизации O-гелия I_0 , следствием чего является разрушение связанной системы O-гелия:

$$dT < I \approx 1.6 MeV \tag{11}$$

$$dT = \frac{dP_{\alpha_i}^2}{2m_\alpha} \tag{12}$$

Под условием 2 понимается условие описанное формулой (6) в предыдущем разделе.

Как видно из рисунка 6, при каждом прохождении цикла в программе вычисляется суммарная сила, действующая на систему $OHe \ \vec{F}_{sum}$:

$$\vec{F}_{sum} = \vec{F}_{ZO}^e + \vec{F}_{\alpha}^e \tag{13}$$

С её помощью вычисляется приращение импульса dP системы OHe, являющееся в совокупности приращением импульса частицы O^{--} .

$$dP = F_{sum}dt \tag{14}$$

Используя приращение импульса dP, вычисляется приращение скорости частицы $O^{--} dV$ для последующего нахождения новой скорости используемой в следующей итерации:

$$dV = \frac{dP}{m_{O^{--}} + m_{\alpha}} \tag{15}$$

Результатом работы алгоритма являются восстановленные траектории альфачастицы и частицы O^{--} . Один из примеров показан на рисунке 7, где синим кружком показано расположение ядра-мишени, красной звёздочкой и фиолетовым квадратом начальное расположение альфа-частицы и частицы O^{--} соответственно, жёлтыми точками и зелёной пунктирной линией показаны траектории движения альфа-частицы и частицы O^{--} соответственно. На рассматриваемом рисунке можно наблюдать отклонение траектории O^{--} от первоначального направления, что связано с кулоновским взаимодействием между ядром He и ядром-мишенью. Это происходит, потому что He оказывается ближе к началу координат и отталкивается от ядра-мишени сильнее, чем к ней притягивается частица O^{--} .

Рисунок 7: Траектории альфа-частицы и частицы О⁻⁻

3. Ядерное взаимодействие в системе ОНе –ядро

На этом этапе программа была дополнена ядерным взаимодействием типа Саксона-Вудса, между ядром He и ядром-мишенью, определяемым силой \vec{F}_{α}^{N}

$$\vec{F}_{\alpha}^{N} = -\frac{\frac{V_{0}}{a} \exp\left(\frac{r_{\alpha} - R_{Z}}{a}\right) \frac{\vec{r}_{\alpha}}{r_{\alpha}}}{\left(1 + \exp\left(\frac{r_{\alpha} - R_{Z}}{a}\right)\right)^{2}},$$
(16)

где R_Z радиус ядра-мишени, V_0 глубина потенциальной ямы, a постоянный параметр.

При этом суммарная сила, действующая на систему OHe, \vec{F}_{Sum} , вычисляется теперь следующим образом:

$$\vec{F}_{Sum} = \vec{F}_{ZO}^e + \vec{F}_\alpha \tag{17}$$

где \vec{F}_{α} суммарная сила действующая на альфа-частицу:

$$\vec{F}_{\alpha} = \vec{F}_{\alpha}^{e} + \vec{F}_{\alpha}^{N} \tag{18}$$

Моделирование производится по алгоритму описанному в предыдущем пункте, где dP_{α} , приращение импульса альфа-частицы, вычисляется теперь следующим образом:

$$dP_{\alpha} = F_{\alpha}dt \tag{19}$$

На основе полученных данных программа строит траектории альфа-частицы и частицы O^{--} . На рисунке 8, демонстрирующем результат работы программы, синим кружком показано расположение ядра-мишени, жёлтыми точками и зелёной пунктирной линией показаны траектории движения альфа-частицы и частицы O^{--} в плоскости ХҮ соответственно.

На рисунке 8 видна разница по сравнению с траекториями альфа-частицы и частицы O^{--} показанными на рисунке 5. Разница появляется за счёт эффекта добавления ядерной силы взаимодействия между ядром-мишенью и альфа-частицей, которая на малых расстаяниях может компенсировать эффект электромагнитного взаимодействия – наблюдаются некие биения в траектории O^{--} .

Рисунок 8: Траектория движения альфа-частицы и частицы О⁻⁻ в плоскости XY

4. Учёт конечного размера ядер

На этой стадии была сделана заготовка для будущих этапов работы, в которых предполагается учесть конечные размеры ядер путём введения распределения плотности нуклонов (ядерный радиус) и плотности протонов (электромагнитный радиус). Для этого в программе были написаны внешние функции для извлечения этих сведений на основе эмпирических моделей по заданным (A,Z), то есть числу нуклонов A и числу протонов Z в ядре [23].

Данные внешние функции работают следующим образом: при их вызове в них отправляются значения массового числа A, зарядового числа Z, плотности протонов или нейтронов в центре ядра $\rho_{o_{p,n}}$, параметр квадрупольного деффекта ядра β_2 , значения которых берутся из базы данных, и расстояние от центра ядра r. Ис-

пользуя полученные данные, внешняя функция вычисляет и возвращает значение плотности протонов или нейтронов в точке г $-\rho_{p,n}.$

III. Дальнейшие перспективы моделирования

На текущий момент процесс численного моделирования взаимодействия "тёмных" атомов *OHe* с ядрами барионного вещества до конца не завершён и требует усовершенствования.

В численную модель планируется ввести квантово-механический эффект туннелирования. По анналогии с таким процессом, как неполное проникновение дейтрона в ядро, в котором происходит туннелирование нейтрона внутрь ядра, можно ввести процесс туннелирования альфа-частицы.

Кулоновское взаимодействие заряженной частицы с ядром характерезуется высотой кулоновского барьера

$$B_k = \frac{Zze^2}{R},\tag{20}$$

где Z и z заряды ядра и частицы соответственно, а R радиус ядра. При сближении связанной системы OHe с ядром барионного вещества, когда кинетическая энергия альфа-частицы $T < B_k$, за счёт квантово-механического эффекта имеется конечная вероятность альфа-частице пройти через потенциальный барьер туннельным переходом и оказаться внутри ядра в какой-то доле случаев рассеяния. В отличии от классического случая, в котором она никогда не сможет пройти через потенциальный кулоновский барьер. Для того чтобы понять, следует ли вводить туннельный эффект в численную модель, планируется проанализировать большое число траекторий движения альфа-частицы с различными прицельными параметрами, подобных траектории на рисунке 8, с целью определить вероятность её туннелирования в каждом из случаев и оценить необходимость учитывания этого эффекта. Вероятность туннельного перехода вичисляется по следующей формуле:

$$D \approx \exp\left(-\frac{2}{\hbar} \int_{R}^{r_2} \sqrt{2\mu(V-T)} dr\right),\tag{21}$$

где μ это приведённая масса, $V = \frac{Zze^2}{r}$ кулоновский потенциал, r расстояние между ядром и частицей, $r_2 = \frac{Zze^2}{T}$.

Когда система *OHe* достаточно близко подходит к ядру-мишени, расстояние между ядром и *He* становится незначительным и недостаточным для рассмот-

рения *He* как точечного объекта. Поэтому в численной модели будут учтены конечные размеры ядер через учёт распределения плотности нуклонов и плотности протонов используя написанные функции, описание которых проводилось в подразделе 4 раздела II данной работы.

ЗАКЛЮЧЕНИЕ

Преимущество модели составной скрытой массы OHe в том, что она включает в себя только один параметр "новой" физики – массу O^{--} . Атомы OHe – эти нейтральные первичные ядерно-взаимодействующие объекты, обеспечивают современную плотность скрытой массы и играют роль нетривиальной формы сильно взаимодействующей "тёмной" материи. Также гипотеза OHe может объяснить противоречивые результаты прямого поиска "тёмной" материи, за счет специфики взаимодействия O-гелия с веществом подземных детекторов. Однако, корректное квантовое рассмотрение этой модели оказывается довольно сложным.

Гипотеза OHe не может работать, если на некотором расстоянии между OHeи ядром не возникнет отталкивающего взаимодействия, и решение данной проблемы является жизненно важным для дальнейшего существования модели тёмного атома OHe [11].

Ядерные силы падают экспоненциально, но они могут быть достаточно сильными, когда система OHe близко подходит к внешнему ядру-мишени. Это незначительные и недостаточные расстояния для рассмотрения ядра He как точечного объекта. Предполагается, что ядерная сила может действительно привести к изменению поляризации O-гелия, что может повлечь за собой создание дипольного кулоновского барьера и что, в итоге, должна возникнуть некоторая колебательная система OHe –ядро. Но это происходит, когда теория возмущений больше не может быть применена и решить уравнение Шрёдингера становится довольно проблематично. Поэтому, целью этой работы являлось численное моделирование взаимодействия атома OHe "тёмной" материи с ядрами барионного вещества, чтобы выявить условия существования их низкоэнергетического связанного состояния и просчитать их эффективный потенциал взаимодействия численным методом.

На текущем этапе численная модель описывает систему трёх точечных, взаимодействующих друг с другом посредством кулоновских и ядерных сил, заряженных частиц. Результатами работы численной модели являются траектории движения точечных частиц, входящих в атом *OHe* скрытой массы, с учётом электромагнитного и ядерного взаимодействий между *O*-гелием и ядром-мишенью барионного вещества, в системе координат *OHe* –ядро. Однако, процесс численного моделирования ещё завершен не полностью и в будущем планируется его усовершенствование, путём введения конечных размеров ядер, через учёт распределения плотности нуклонов и плотности протонов, и введения квантово-механического эффекта туннелирования ядра *He* внутрь ядра барионного вещества.

СПИСОК ЛИТЕРАТУРЫ

- M.Yu. Khlopov in Cosmion-94, Eds. M.Yu.Khlopov et al. (Editions frontieres, 1996) P. 67; M. Y. Khlopov in hep-ph/0612250, p 51.
- M. Y. Khlopov, Bled Workshops in Physics 8, 114 (2007); in arXiv:0711.4681, p. 114;
 M. Y. Khlopov and N. S. MankocBorstnik, ibid, p. 195.
- Bertone G., Hooper D., Silk J. Particle dark matter: evidence, candidates and constraints // Physics Reports. – 2005. – янв. – т. 405, № 5/6. – с. 279 – 390. – ISSN 0370-1573. – DOI: 10.1016/j.physrep.2004.08.031. – URL: http://dx.doi.org/10.1016/j.physrep.2004.08.031.
- 4. Khlopov M. Fundamental particle structure in the cosmological dark matter // International Journal of Modern Physics A. – 2013. – нояб. – т. 28, № 29. – c. 1330042. – ISSN 1793-656X. – DOI: 10.1142/s0217751x13300421. – URL: http://dx.doi.org/10.1142/S0217751X13300421.
- Khlopov M. Y. Dark matter reflection of particle symmetry // Modern Physics Letters A. – 2017. – апр. – т. 32, № 15. – с. 1740001. – ISSN 1793-6632. – DOI: 10.1142/s0217732317400016. – URL: http://dx.doi.org/10.1142/ s0217732317400016.
- Scott P. Searches for Particle Dark Matter: An Introduction. 2011. arXiv: 1110.2757 [astro-ph.CO].
- Fabbrichesi M., Gabrielli E., Lanfranchi G. The Dark Photon. 2020. arXiv: 2005.01515 [hep-ph].
- Khlopov M. Cosmoparticle physics of dark matter // EPJ Web of Conferences / под ред. D. Melikhov, I. Volobuev. – 2019. – т. 222. – с. 01006. – ISSN 2100-014X. – DOI: 10.1051/epjconf/201922201006. – URL: http://dx.doi.org/ 10.1051/epjconf/201922201006.
- Cudell J. R., Khlopov M., Wallemacq Q. The nuclear physics of OHe // Bled Workshops Phys. - 2012. - т. 13. - с. 10 –27. – arXiv: 1211.5684 [astro-ph.CO].

- Fargion D., Khlopov M. Tera-Leptons Shadows over Sinister Universe // Gravitation and Cosmology. – 2005. – arXiv: hep-ph/0507087 [hep-ph].
- 11. Khlopov M. Yu. 10 years of dark atoms of composite dark matter // Bled Workshops Phys. – 2015. – т. 16, № 2. – с. 71 –77. – arXiv: 1512.01081 [hep-ph].
- Khlopov M. Y. Conspiracy of BSM physics and cosmology. 2019. arXiv: 1911.03294 [hep-ph].
- Belotsky K. M., Khlopov M. Y., Shibaev K. I. Composite Dark Matter and its Charged Constituents. – 2006. – arXiv: astro-ph/0604518 [astro-ph].
- 14. Khlopov M. Y., Stephan C. A., Fargion D. Dark matter with invisible light from heavy double charged leptons of almost-commutative geometry? // Classical and Quantum Gravity. 2006. нояб. т. 23, № 24. с. 7305 –7354. ISSN 1361-6382. DOI: 15.1088/0264-9381/23/24/008. URL: http://dx.doi.org/10.1088/0264-9381/23/24/008.
- Khlopov M. Y., Kouvaris C. Strong interactive massive particles from a strong coupled theory // Physical Review D. – 2008. – март. – т. 77, № 6. – ISSN 1550-2368. – DOI: 10.1103/physrevd.77.065002. – URL: http://dx.doi. org/10.1103/PhysRevD.77.065002.
- Khlopov M. Yu., Mayorov A. G., Soldatov E. Yu. The dark atoms of dark matter // Prespace. J. – 2010. – т. 1. – с. 1403 –1417. – arXiv: 1012.0934 [astro-ph.CO].
- Beylin V., Khlopov M. Yu., Kuksa V., Volchanskiy N. Hadronic and Hadron-Like Physics of Dark Matter // Symmetry. – 2019. – т. 11, № 4. – с. 587. – DOI: 10.3390/sym11040587. – arXiv:1904.12013 [hep-ph].
- 18. Khlopov M. Y. Pisma Zh. Eksp. Teor. Fiz. 83 (2006) 3 [JETP Lett. 83 (2006)
 1]. 2005. arXiv: astro-ph/0511796 [astro-ph].

- Khlopov M. Dark atoms and puzzles of dark matter searches // International Journal of Modern Physics A. – 2014. – июль. – т. 29, № 19. – с. 1443002. – ISSN 1793-656X. – DOI: 10.1142/s0217751x14430027. – URL: http://dx. doi.org/10.1142/S0217751X14430027.
- Bernabei R. Dark matter investigation by dama at gran sasso // International Journal of Modern Physics A. – 2013. – июнь. – т. 28, № 16. – с. 1330022. – ISSN 1793-656X. – DOI: 10.1142/s0217751x13300226. – URL: http://dx. doi.org/10.1142/S0217751X13300226.
- 21. Khlopov M. Y. Physics of dark matter in the light of dark atoms // Modern Physics Letters A. – 2011. – дек. – т. 26, № 38. – с. 2823 –2839. – ISSN 1793-6632. – DOI: 10.1142/s0217732311037194. – URL:http://dx.doi.org/10. 1142/S0217732311037194.
- 22. Khlopov M. Y. Composite dark matter from stable charged constituents. 2008.
 arXiv: 0806.3581 [astro-ph].
- 23. Seif W. M., Mansour H. Systematics of nucleon density distributions and neutron skin of nuclei // Int. J. Mod. Phys. 2015. т. Е24, № 11. с. 1550083. DOI: 10.1142/S0218301315500834. arXiv: 1504.08350 [nucl-th].