МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ЯДЕРНЫЙ УНИВЕРСИТЕТ «МИФИ»

Дипломная работа

Разработка программ реконструкции нейтральных пи-мезонов для электромагнитного калориметра эксперимента MPD/NICA

Руководитель НИР: к.ф.-м.н. нач. лаборатории НИЦ Курчатовский институт Блау Д.С.

Выполнил: Студент группы Б16-102 Каюков А.А.

Москва 2020

Цель и задачи работы

Целью работы является разработка и оптимизация программ реконструкции нейтральных мезонов для калориметра ECal Задачи:

- Рассмотрение теоретических аспектов разработки программ реконструкции нейтральных кластеров
- Разработка критериев идентификации фотонов
- Применение критериев к парам кластеров для вычисления числа пи0-мезонов под пиком в спектре инвариантных масс

Комплекс NICA

Исследования:

- Встречные пучки ионов
- Встречные пучки поляризованных протонов и дейтронов
- Выведенные пучки тяжелых ионов и поляризованных частиц

Рисунок 1: Схема комплекса NICA

Эксперимент MPD

Эксперимент будет проводиться на встречных пучках тяжелых ионов. Предназначен для исследования фазовой диаграммы КХД в области высоких плотностей и температур, включая поиск основных состояний адронной материи и фазовые переходы.

Рисунок 3: Фазовая диаграмма КХД

Рисунок 2: Схема установки MPD

Электромагнитный калориметр ECaL

Измерение пространственного положения и энергии фотонов и электронов, рожденных в столкновениях тяжелых ионов.

Рисунок 4: Принципиальная схема башни калориметра ECaL, где

- 1 сцинтилляционная пластина,
- 2 свинцовая пластина,
- 3 и 4 сдавливающие пластины,
- 5 натягивающая струна.

Рисунок 5: Один модуль Рикалориметра

Рисунок 6: Калориметр в разрезе

Генерация, симуляция и реконструкция

Рисунок 7: Распределение множественности нейтральных пи-мезонов по прицельному параметру

Генерация UrQMD с прицельным параметром от 0 до 15 фм: 100 тыс. - Аи + Аи

Моделирование и реконструкция: Используется 10 тыс. событий и добавляется к каждому событию 200 нейтральных пи-мезонов в диапазоне поперечного импульса 0.25 - 2.00 GeV/с. Моделирование проводилось с помощью пакета программ GEANT4, включенных в пакет MPDRoot. Реконструкция проводилась на основе фильтра Калмана, также реализованного в MPDRoot.

Поиск заряженных кластеров

Рисунок 9: Распределения разности координат между кластером и ближайшим к нему треком (0.1 < E < 0.2 ГэВ)

Рисунок 10: Отношения распределений разности координат между кластером и треком всех кластеров к кластерам от пи0 распада (0.1 < E < 0.2 ГэВ).

Поиск заряженных кластеров

б) Рисунок 12: Распределения двух-фотонных инвариантных масс пар кластеров под действием критерия на заряженные кластеры для 1.25 < pt < 1.50 (а) и 1.75 < pt < 2.00 (б).

Дисперсии кластеров

Ковариационная матрица кластера:

$$S = \begin{pmatrix} s_{xx} & s_{xz} \\ s_{zx} & s_{zz} \end{pmatrix}$$
$$s_{xx} = \langle (x - \overline{x})^2 \rangle$$
$$s_{xz} = \langle (x - \overline{x})(z - \overline{z}) \rangle$$

Рисунок 13: Схематичный вид поверхности кластера и плоскость пересечения этой поверхности с поверхностью калориметра

Дисперсии кластеров

Рисунок 14: Распределение дисперсий кластеров для 0.0 < E < 0.1 (a) и 0.4 < E < 0.5(б).

Для каждого диапазона энергий фитируется двумерным распределением Гаусса:

$$F(x,y) = \frac{1}{2\pi \cdot \sigma_x \sigma_y} \cdot e^{\left[-\frac{1}{2} \cdot \left(\frac{(x-\mu_x)^2}{\sigma_x^2} + \frac{(y-\mu_y)^2}{\sigma_y^2} - 2r_{xy} \cdot \frac{(x-\mu_x)}{\sigma_x} \frac{(y-\mu_y)}{\sigma_y}\right)\right]}$$

Дисперсии кластеров

Рисунок 15: Распределения двух-фотонных инвариантных масс пар кластеров под действием критерия на дисперсию для 1.25 < pt < 1.50 (а) и 1.75 < pt < 2.00 (б).

Учет временного разрешения калориметра

Рисунок 16: Зависимость временного разрешения от энергии кластера

Информация о времени образования кластера размывалась временным разрешением с помощью функции Гаусса: t = t + F(0,res), где res = TimeResolution(E) функция, зависящая от энергии кластера.

Учет временного разрешения калориметра

Рисунок 17: Распределение по времени пролета частицы до размытия и после размытия для всех частиц.

Критерий на время пролета

$$\Delta t = t_{clu} - \frac{\Delta T}{c}$$

 f_{clu} - экспериментально измеренное время
появления кластера

- Δr расстояние от кластера до первичной вершины
 - с скорость света

m

Рисунок 18: Распределение по времени пролета частицы для фотонов, рожденных в процессе распада рі-0

Критерий на время пролета

Рисунок 19: Распределения двух-фотонных инвариантных масс пар кластеров под действием критерия на время пролета для 1.25 < pt < 1.50 (а) и 1.75 < pt < 2.00 (б).

Применение всех критериев

Рисунок 20: Распределения двух-фотонных инвариантных масс пар кластеров под действием всех критериев для 1.00 < pt < 1.25 (a) и 1.75 < pt < 2.00 (б).

Применение всех критериев

Таблица 1: Эффективности критериев

Pt, ГэВ	Veto	Time	Disp	Both cuts
(0.75-1.00)	0.764 ± 0.011	0.715 ± 0.009	0.682 ± 0.011	0.606 ± 0.006
(1.00-1.25)	0.728 ± 0.010	0.731 ± 0.008	0.661 ± 0.009	0.625 ± 0.006
(1.25-1.50)	0.750 ± 0.009	0.754 ± 0.008	0.681 ± 0.009	0.649 ± 0.006
(1.50-1.75)	0.778 ± 0.010	0.787 ± 0.009	0.719 ± 0.009	0.681 ± 0.007
(1.75-2.00)	0.807 ± 0.013	0.823 ± 0.012	0.756 ± 0.012	0.713 ± 0.009

Таблица 2: Отношение сигнала к фону

Pt, ГэВ	All	Veto	Time	Disp	Both cuts
(0.75 - 1.00)	0.0317 ± 0.0005	0.0437 ± 0.0006	0.0566 ± 0.0007	0.0424 ± 0.0006	0.1055 ± 0.0010
(1.00-1.25)	0.0536 ± 0.0007	0.0702 ± 0.0009	0.0950 ± 0.0010	0.0693 ± 0.0009	0.1659 ± 0.0015
(1.25-1.50)	0.0859 ± 0.0011	0.1112 ± 0.0013	0.1486 ± 0.0015	0.1198 ± 0.0013	0.252 ± 0.002
(1.50-1.75)	0.136 ± 0.002	0.178 ± 0.002	0.229 ± 0.002	0.176 ± 0.002	0.387 ± 0.004
(1.75-2.00)	0.209 ± 0.003	0.281 ± 0.004	0.338 ± 0.004	0.277 ± 0.004	0.583 ± 0.007

Заключение

- Разработаны критерии для отбора нейтральных кластеров
- Вычислены эффективности регистрации нейтральных мезонов для каждого из критериев
- Вычислены отношения сигнала к фону для каждого из критериев

Спасибо за внимание

Дисперсии кластеров от фотонов

40 тыс. частиц

Дисперсии кластеров от нейтронов