МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ЯДЕРНЫЙ УНИВЕРСИТЕТ «МИФИ» (НИЯУ МИФИ)

ИНСТИТУТ ЯДЕРНОЙ ФИЗИКИ И ТЕХНОЛОГИЙ КАФЕДРА №40 «ФИЗИКА ЭЛЕМЕНТАРНЫХ ЧАСТИЦ»

УДК 539.1.06

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА К БАКАЛАВРСКОЙ ДИПЛОМНОЙ РАБОТЕ ИЗУЧЕНИЕ ПРОСТРАНСТВЕННОЙ НЕОДНОРОДНОСТИ СВЕТОСОБИРАНИЯ ДЕТЕКТОРА РЕАКТОРНЫХ АНТИНЕЙТРИНО IDREAM

Студент

Научный руководитель, к.ф.-м.н., нач.лаб. НИЦ «КИ»

____ А. А. Растимешин

Е. А. Литвинович

Москва 2020

ВЫПУСКНАЯ КВАЛИФИКАЦИОННАЯ РАБОТА БАКАЛАВРА

ИЗУЧЕНИЕ ПРОСТРАНСТВЕННОЙ НЕОДНОРОДНОСТИ СВЕТОСОБИРАНИЯ ДЕТЕКТОРА РЕАКТОРНЫХ АНТИНЕЙТРИНО IDREAM

Студент

_____А. А. Растимешин

Научный руководитель, к.ф.-м.н., нач.лаб. НИЦ «КИ»

Рецензент,

к.ф.-м.н., в.н.с.

Секретарь ГЭК,

к.ф.-м.н.

Зав. каф. №40,

д.ф.-м.н., проф.

С. В. Сухотин

____ А. А. Кириллов

____ М. Д. Скорохватов

Е. А. Литвинович

ΡΕΦΕΡΑΤ

Отчет 26 с., 16 рис., 1 табл., 9 ист.

- Ключевые слова: Нейтрино, детектор iDREAM, неоднородность светособирания, энергетическое разрешение, обратный бета-распад
- Цель работы: Оценка неоднородности светосбора детектора и энергетического разрешения детектора iDREAM
- Использованные методы и инструментарий:
 - 1) Источники гамма-квантов $^{137}{\rm Cs}$
и $^{207}{\rm Bi}$
 - 2) Программный пакет ROOT
- Полученные результаты: измерено значение неоднородности светособирания детектора iDREAM относительно геометрического центра, измерено энергетическое разрешение детектора в центре мишени из расчёта на 1 МэВ выделившейся в детекторе энергии.

СОДЕРЖАНИЕ

	Введение	5
1	Подготовка эксперимента	6
	1.1 Применение антинейтринного излучения в атомной энерге-	
	тике для дистанционного контроля ядерного реактора	6
	1.2 Устройство детектора iDREAM	10
2	Анализ калибровочных данных детектора	15
	2.1 Проведение измерений	15
	2.2 Изучение неоднородности светособирания	17
	Заключение	25
	Список использованных источников	26

ВВЕДЕНИЕ

Целью данной работы было изучение спектрометрических характеристик детектора iDREAM: пространственной неоднородности светособирания и энергетического разрешения.

Неоднородность светособирания – это зависимость функции отклика детектора от положения источника излучения. Одними из основных факторов, влияющих на неоднородность светособирания, являются геометрия детектора, расположение ФЭУ, а также отражающие характеристики поверхности мишени.

Детектор iDREAM является экспериментальным образцом индустриального детектора для онлайн мониторинга ядерных реакторов на АЭС по характеристикам потока антинейтрино из активной зоны реактора. В настоящее время детектор проходит подготовку перед вывозом на Калининскую АЭС. В рамках подготовки производились калибровки детектора при помощи радиоактивных источников. В ходе анализа калибровочных данных изучались пространственная неоднородность светособирания и энергетическое разрешение.

1. ПОДГОТОВКА ЭКСПЕРИМЕНТА

1.1. ПРИМЕНЕНИЕ АНТИНЕЙТРИННОГО ИЗЛУЧЕНИЯ В АТОМНОЙ ЭНЕРГЕТИКЕ ДЛЯ ДИСТАНЦИОННОГО КОНТРОЛЯ ЯДЕРНОГО РЕАКТОРА

Исследования о возможности применения антинейтринного излучения от ядерных реакторов для дистанционного контроля ядерного реактора начались примерно 50 лет назад в нескольких странах. К настоящему времени накоплен опыт работы по этой теме: с высокой точностью изучены процессы излучения и взаимодействия реакторных антинейтрино, разработаны методы регистрации антинейтринного излучения ядерных реакторов.

На данный момент имеется возможность практического использования антинейтринного излучения для решения таких задач как:

- 1) Выявление несанкционированных режимов работы реактора, в т.ч. с целью наработки оружейного плутония
- 2) Дистанционный контроль энерговыработки ядерных реакторов
- Контроль технического состояния и повышения безопасности эксплуатации ядерных реакторов.
- 4) Мониторинг отработавшего ядерного топлива

Идея использования антинейтринного излучения в ядерной энергетике появилась в Курчатовском институте в 70-ых годах и затем нашла подтверждение в ряде экспериментальных работ, проведенных сотрудниками Курчатовского института на АЭС в Ровно 1 и в Буже (Франция).

Цепная реакция деления, протекающая в активной зоне ядерного реактора, сопровождается излучением электронного антинейтрино в результате процессов бета-распада перегруженных нейтронами осколков деления. При производстве тепловой энергии 1 МВт × сутки в реакторе ВВЭР-1000 выгорает примерно 1.3 грамма топлива, что соответствует 3×10^{21} делений и излучению 1.8×10^{22} антинейтрино. Плотность потока антинейтрино Φ [антинейтрино/см²×с] прямо пропорциональна скорости выгорания топлива. Характерная величина плотности потока антинейтрино за биологической защитой реактора, работающего на тепловой мощности 1 ГВт, составляет $\Phi \sim 10^{13}$ антинейтрино/см²×с, что на несколько порядков выше предела чувствительности современных исследовательских детекторов. Таким образом, уровни облучения ядерного топлива и режим работы реактора могут контролироваться детектором дистанционно в режиме постоянного мониторинга по скорости счета антинейтрино.

Ещё больше информации о состоянии ядерного топлива можно получить если замерять энергетический спектр реакторных антинейтрино, поскольку при делении разных изотопов, входящих в состав ядерного топлива, формируются разные энергетические спектры нейтринного излучения. Таким образом, измерение энергетической зависимости плотности потока антинейтрино дает возможность определить состав ядерного топлива, а постоянный мониторинг – динамику выгорания изотопов урана и накопление изотопов плутония, т.е. прямой способ измерения содержания плутония в активной зоне реактора.

Для измерения плотности потока и энергетического спектра реакторных антинейтрино используется реакция обратного бета-распада:

$$\bar{\nu_e} + p \to n + e^+ \tag{1.1}$$

Сечение реакции (1.1) получено теоретически [3] и проверено экспериментально на АЭС в Ровно и Бюже с точностью 1.4%. [4]

Основными компонентами ядерного топлива являются изотопы ²³⁵U, ²³⁹Pu, ²³⁸U и ²⁴¹Pu, суммарный вклад которых в общее число делений составляет около 99.8%. Спектр электронных антинейтрино от ядерного реактора в области энергий, превышающих порог реакции обратного бетараспада 1.8 МэВ, может быть представлен в следующем виде:

$$\rho(E_{\bar{\nu}_{e}}, t) = \sum_{i} \alpha_{i}(t)\rho_{i}(E_{\bar{\nu}_{e}}), \qquad (1.2)$$

где $\rho_i(E_{\bar{\nu}_e})$ – спектры электронных антинейтрино продуктов деления ²³⁵U, ²³⁹Pu, ²³⁸U, ²⁴¹Pu (рис. 1.1), а $\alpha_i(t)$ – доли делений изотопов для момента времени t. В данном случае считаем $\sum_i \alpha_i = 1$ для любого момента времени, поскольку вклад в антинейтринное излучение других изотопов пренебрежимо мал. Вклад каждого изотопа меняется по ходу работы реактора (рис 1.2), но их сумма остается неизменной.

Рисунок 1.1 – Спектры электронных антинейтрино от изотопов 235 U(рис. а), 239 Pu(рис. b), 238 U(рис. c), 241 Pu(рис. d) [5]

Рисунок 1.2 – Зависимость вклада изотопов α_i в число делений в течение годичного цикла работы реактора ВВЭР-1000. Видно, что вклад изотопов меняется в ходе кампании реактора. В среднем вклад составляет 0.56 для ²³⁵U, 0.31 для ²³⁹Pu, 0.06 для ²⁴¹Pu и 0.07 для ²³⁸U.

В качестве мишени в детекторе используется водородо-содержащая органическая жидкость (в рамках данной работы – линейный алкилбензол), на основе которой производится жидкий сцинтиллятор. Детектирование антинейтрино осуществляется по фотонам люминесценции, возникающим при поглощении позитрона и нейтрона в сцинтилляторе. Фотоны регистрируются с помощью ФЭУ. Замедление и диффузия нейтрона до его захвата позволяют разделить во времени сигналы от позитрона и нейтрона. Энергия налетающего антинейтрино $E_{\bar{\nu}_e}$ линейно связана с измеряемой детектором величиной позитронного сигнала, который, в свою очередь, зависит от кинетической энергии позитрона. Необходимо также учесть постоянную поправку от двух аннигиляционных γ -квантов:

$$E_{\text{M3M}} = E_{\bar{\nu}_{e}} - T_{\text{nop}} + 2m_{e}c^{2} = E_{\bar{\nu}_{e}} - 0.78 \text{ M}\Im\text{B}, \qquad (1.3)$$

где $T_{\rm nop} = 1.8 \,\mathrm{M}$ эВ – порог реакции. Регистрация нейтронов используется для выделения событий взаимодействия антинейтрино на фоне других событий.

При массе мишени ~ 1000 кг число регистрируемых нейтрино в диапазоне энергий от 1.8 МэВ до 10 МэВ на расстоянии 19 метров от реактора типа ВВЭР-1000 составит примерно 4000 в сутки.

Таким образом, с помощью детектора антинейтрино можно с высокой точностью [6] измерять текущую мощность реактора, энерговыработку, анализировать состав ядерного топлива и динамику изменения изотопного состава активной зоны реактора. Особенностями данного метода являются:

- 1) Сбор и анализ данных во время работы реактора.
- 2) Отсутствие какого-либо вмешательства в работу реактора.
- 3) Оперативное получение информации.
- 4) Автономность

Предлагаемый метод регистрации реакторных антинейтрино был реализован в детекторе iDREAM.

1.2. УСТРОЙСТВО ДЕТЕКТОРА IDREAM

Детектор iDREAM представляет собой жидко-сцинтилляционный детектор с сцинтиллятором на основе линейного алкилбензола – ЛАБ, объемом 1.1м³, предназначенный для регистрации реакторных антинейтрино по реакции обратного бета-распада:

$$\bar{\nu_e} + p \to n + e^+ \tag{1.4}$$

Корпус детектора состоит из двух коаксиальных баков из листов нержавеющей стали толщиной 2 мм. Баки закрыты общей герметичной крышкой. Внутренний бак имеет диаметр 1254 мм и высоту 1320 мм. Дно бака во избежание образования «хлопунов», нарушающих рабочую геометрию детектора, усилено решеткой из стальных брусков толщиной 20 мм. Внутренний бак жестко закреплен на дне наружного бака и разделен по высоте на две части выпуклой прозрачной мембраной из акрила с вертикальной трубкой по центральной оси диаметром 180 мм и высотой 470 мм. Мембрана уплотнена между фланцами нижней и верхней частей бака кольцевыми уплотнителями из витона. Снаружи узел уплотнения мембраны закрыт светонепроницаемым кольцеобразным экраном. Пространство под мембраной объемом 1.1 м³ изолировано от общего объема детектора, заполняется ЖОС и является мишенью детектора. Пространство объемом 0.5 м³ над мембраной заполняется чистым ЛАБ и является буфером. Внутренний бак закрыт крышкой с круглыми окнами – центральное окно диаметром 200 мм для вывода трубки мембраны и 16 окон диаметром 210 мм для установки 16 узлов ФЭУ Hamamatsu R5912, просматривающих мишень через прозрачные буфер и мембрану. Фотокатоды ФЭУ погружены в ЛАБ буфера. Схемы детектора iDREAM изображены на рисунках 1.3 и 1.4.

Рисунок 1.3 – Чертеж детектора iDREAM

Рисунок 1.4 – Общий вид детектора iDREAM

Наружный бак имеет диаметр 1858 мм и конструктивно состоит из трех секций, герметично соединенных с помощью межфланцевых кольцевых уплотнителей из витона. Высота наружного бака без крышки составляет 1620 мм. Кольцевой зазор между стенками внутреннего и наружного баков на глубину 1220 мм заполняется жидким органическим сцинтиллятором и просматривается двенадцатью ФЭУ. Для калибровки кольцевого объема в каждом сегменте симметрично между узлами ФЭУ установлен узел с вертикальной трубкой из акрил, аналогичный узлу калибровки на крышке трубки мембраны внутреннего бака. Сегменты крепятся к держателям на внутренней стенке 2-й секции наружного бака и опираются на опорное кольцо верхней части внутреннего бака. Функционально кольцевой зазор является частью активной защиты детектора от космического излучения, а также повышает эффективность детектора за счет регистрации продуктов реакции обратного бета-распада, вышедших за пределы мишени.

Для калибровки кольцевого объема детектора в наружном фланце герметичной крышки баков над калибровочными узлами сегментов выполнено шесть отверстий со съемными герметичными заглушками для установки калибратора. Возможный эксцентриситет отверстий в крышке и в сегментах компенсируется установкой в узлах калибровки сегментов воронкообразных направляющих для капсулы с радиоактивным источником калибратора.

Трубка мембраны выходит за пределы высоты внутреннего бака. Ее объем рассчитан с учетом коэффициента теплового расширения ЛАБ так, чтобы при рабочей температуре 20 °С уровень ЖОС мишени объемом 1.1 ${\rm M}^3$ находился на середине высоты трубки, а при колебании температуры в пределах $(20\pm5)^{\circ}$ C не превысил высоту трубки и не опустился ниже ее основания. Чтобы предотвратить переливание сцинтиллятора в случае превышения предельной температуры +25°C трубка закрыта герметичной крышкой, имеющей герметичное соединение через коллектор рабочих жидкостей и азота с внешним ресивером. Объем ресивера, также через коллектор, соединен со свободным объемом детектора под герметичной крышкой баков. В крышке трубки мембраны сделаны три отверстия для герметичного ввода в мишень необходимого технологического оборудования. В двух из них уплотнены доходящие до дна внутреннего бака вертикальные трубки из акрила диаметром 36 мм с глухим нижнем концом. В одной трубке установлен датчик уровня сцинтиллятора мишени в трубке мембраны по давлению столба сцинтиллятора, совмещенный с датчиком температуры сцинтиллятора. Другая трубка используется для калибровки детектора с помощью калибратора и стандартных радиоактивных источников. Третье отверстие предусмотрено для организации еще одного герметичного ввода в мишень.

В качестве мишени для антинейтрино используется богатая водородом жидкая среда – линейный алкилбензол (ЛАБ) с добавлением PPO – 2.5 дифенилоксазол (C₁₅ H₁₁ON) и bis-MSB – 1.4-бис(2-метилстирил)бензол (C₂₄H₂₂) в концентрация 3 г/л и 0.02 г/л соответственно [7]. Также в качестве добавки используется гадолиний в концентрации 1 г/л для регистрации нейтронов, поскольку гадолиний обладает большим сечением захвата нейтронов ($\sigma_{157} \approx 254000$ бн для ¹⁵⁷Gd, $\sigma_{155} \approx 60900$ бн для ¹⁵⁵Gd, $\sigma \approx 49000$ бн для природной смеси)

В детекторе iDREAM используются рабочие жидкости трех видов.

- 1) Чистый ЛАБ заливается в буфер
- 2) ЛАБ + PPO + bis-MSB заливается в кольцо

3) ЛАБ + PPO + bis-MSB + Gd - заливается в мишень

Детектор укомплектован 28 ФЭУ Hamamatsu R5912, схема расположения которых представлена на рисунке 1.5. ФЭУ с 1-ого по 16-й просматривают центральный объем (мишень) детектора, а с 17-ого по 28-ой – внешнее кольцо (гамма-кэтчер), которое полностью светоизолировано от мишени. 8 9

Рисунок 1.5 – Расположение ФЭУ в детекторе (вид сверху)

Следствием такой конструкции, выбранной из требований, предъявляемых к промышленному детектору (в их числе: простота, компактность, невысокая стоимость), является высокая неоднородность светособирания. Для её компенсации в конструкцию между ФЭУ и мишенью был введен прозрачный буфер, выравнивающий сбор фотонов люминесценции. Тем не менее, буфер не подавляет неоднородность светособирания полностью. Для ещё большей компенсации используется пленка из люмира, которой покрывается дно и стенки внутреннего бака, однако, по техническим причинам, пленка отсутствовала на дне детектора во время сбора данных.

2. АНАЛИЗ КАЛИБРОВОЧНЫХ ДАННЫХ ДЕТЕКТОРА

2.1. ПРОВЕДЕНИЕ ИЗМЕРЕНИЙ

Для анализа неоднородности светособирания использовались источники гамма-квантов ¹³⁷Cs (662 кэВ) и ²⁰⁷Bi (570 кэВ, 1633 кэВ и 2340 кэВ), схемы распада которых изображены на рисунках 2.1 и 2.2. Источники помещались в герметичный контейнер из нержавеющей стали. Детектор имеет вертикальный канал для ввода источников излучения, представляющий собой акриловую трубку, расположенную в сцинтилляторе (внутри самой трубки сцинтиллятора нет).

Контейнер с источником может перемещаться на любое расстояние от крышки детектора до его дна.

Рисунок 2.1 – Схема распада ¹³⁷Сs

Рисунок 2.2 – Схема распада ²⁰⁷Ві

При проведении измерений источник перемещался по вертикальному каналу со дна детектора до отметки в 815 миллиметров с шагом по 100 миллиметров, а начиная с отметки 815 миллиметров и до 1115 миллиметров – с шагом по 50 миллиметров. На каждой отметке производились измерения энергии частиц на протяжении 100 секунд. Также до и после измерения спектра источника проводились измерения спектра фона без источника, аналогично, на протяжении 100 секунд. Результаты замеров записывались в ROOT файлы.

Рисунок 2.3 – Вид сигнала с детектора при попадании гамма-кванта в мишень.

2.2. ИЗУЧЕНИЕ НЕОДНОРОДНОСТИ СВЕТОСОБИРАНИЯ

Для того, чтобы найти энергию, выделившуюся при попадании частицы в мишень, необходимо сначала посчитать заряд (в условных единицах), образовавшийся в ФЭУ. Для того, чтобы это сделать, необходимо проинтегрировать пик, представленный на рисунке 2.3. После этого необходимо перевести условный заряд в энергию гамма-кванта с помощью деления полученного заряда на коэффициент QE [канал/МэВ]. Данный коэффициент получается экспериментально: выбирается реперное значение высоты (реперная точка), для неё подбирается коэффициент QE таким образом, чтобы энергия, после деления на QE, получилась равной 0.662 МэВ.

Область интегрирования, в свою очередь, может определяться двумя способами:

1) В первом случае интегрирование производится на фиксированном промежутке (рис. 2.4): интегрируется отрезок фиксированной величины в окрестности пика. Для всех сигналов промежуток остается одним и тем же относительно положения пика. В данном случае необходимо обратить внимание на «хвост» (область графика с отрицательными значениями после пика), который появляется вследствие того, что в детекторе iDREAM используется однокабельная система снятия сигнала с ФЭУ. Если наличие «хвоста» никак не учесть, то при интегрировании этот участок может попасть в область интегрирования, что приведет к искажению результата. Чтобы это исключить, необходимо провести деконволюцию сигнала.

Рисунок 2.4 – Вид сигнала с детектора до деконволюции (синий) и после (красный) с указанием области интегрирования. Интегрирование производится по красному сигналу.

2) Во втором случае интегрирование производится «от нуля до нуля» (рис 2.5): берется точка по оси t в которой начинается рост пика (слева) и точка, в которой значение пика достигает нуля (справа). По этой области производится интегрирование. Очевидно, что для каждого сигнала отрезок, на котором производится интегрирование, будет разным и будет напрямую зависеть от формы сигнала. Производить деконволюцию сигнала не требуется.

Рисунок 2.5 – Вид сигнала с детектора с указанием области интегрирования

В дальнейшем будет произведено сравнение обоих способов.

После вычисления энергий, выделившихся в каждом событии, были построены энергетические спектры для каждого положения источника. Приведем в качестве примера спектр на высоте 415 миллиметров (рис 2.6). Эта точка была выбрана в качестве реперной поскольку она соответствует центру цилиндрической мишени детектора.

Рисунок 2.6 – Энергетический спектр излучения на высоте 415 миллиметров. Красным показан спектр ¹³⁷Cs с фоном, синим показан спектр ¹³⁷Cs без фона, черным показан спектр фона.

На этом моменте мы подошли к моменту непосредственного наблюдения неоднородности светособирания. Если на одном графике построить спектры для нескольких разных положений источника, то получим картину, представленную на рисунках 2.7 и 2.8. Видно, что <u>зарегистрированная</u> энергия зависит от положения источника.

Рисунок 2.7 – Энергетические спектры излучения ¹³⁷Cs на высотах 115мм (черный), 415мм (синий) и 865мм (красный).

Рисунок 2.8 – Энергетические спектры излучения ²⁰⁷Ві на высотах 115мм (черный), 415мм (синий) и 865мм (красный).

Для большей наглядности построим график зависимости отношения $\frac{E_{\rm i}}{E_{415}}$ (рис. 2.9), где $E_{\rm i}$ – энергия на i-ой высоте, E_{415} – энергия на высоте 415 мм

Из рисунка 2.9 следует, что отклонение светособирания относительно положения источника на высоте 415 миллиметров составляет (-15%; +22%).

Приведенные выше результаты получены при применении второго способа определения энергии. Для сравнения с первым способом проведем аналогичные действия, а для наглядного сравнения изобразим на одном графике зависимости неоднородности светосбора от положения источника(рис 2.10).

Рисунок 2.9 – Неоднородность светосбора вдоль вертикальной оси детектора

Рисунок 2.10 – Неоднородность светосбора вдоль вертикальной оси детектора при определении области интегрирования первым способом (красный) и вторым (синий)

Видно, что зависимости практически не отличаются друг от друга. Исходя из этого, можно утверждать, что в рамках данной задачи оба способа дают одинаковые результаты.

Значение полученной неоднородности говорит о необходимости дальнейших работ по улучшению светособирания детектора, в первую очередь, об установке светоотражающего люмира на дно мишени.

Одной из наиболее важных характеристик любого детектора является энергетическое разрешение.

В свою очередь, неоднородность светособирания негативно влияет на разрешение детектора (чем меньше сцинтилляционных фотонов собирается ФЭУ – тем хуже разрешение). Также заметим, что часть гамма-квантов не регистрируются детектором вовсе, и чем ближе источник находится ко дну или к верхней границе мишени, тем меньше гамма-квантов будет регистрироваться (в случае близкого расположения источника ко дну гаммакванты, вылетевшие в сторону дна, не успевают высветить сцинтилляционные фотоны, аналогично и для положения источника вблизи верхней границы мишени).

Для оценки влияния неоднородности светособирания на энергетическое разрешение детектора была построена зависимость энергетического разрешения (в процентах) от положения источника в детекторе (рис 2.11).

Рисунок 2.11 – Зависимость энергетического разрешения детектора от положения источника.

Из рисунка 2.11 видно, что при поднятии источника с нижней точки до отметки в 315 мм наблюдается улучшение энергетического разрешения, что объясняется улучшением поглощения гамма-квантов в сцинтилляторе, испускаемых источником, вследствие удаления источника от дна. Далее наблюдается ухудшение разрешения, что связано с постепенным приближением источника к верхней границе мишени, резкое падение качества в конце объясняется выходом источника из мишени.

Зачастую в качестве характеристики детектора указывается его энергетическое разрешение из расчета на 1 МэВ выделившейся в детекторе энергии. Для того, чтобы получить это значение имея в качестве источников гамма-квантов ²⁰⁷Ві и ¹³⁷Сs, можно воспользоваться принципом, согласно которому энергетическое разрешение детектора зависит от энергии как $\delta(E) \sim \frac{1}{\sqrt{E}}$. Были взяты следующие значения: 570 кэВ (источник: ²⁰⁷Ві), 662 кэВ (¹³⁷Cs), 1633 кэВ (²⁰⁷Bi). Необходимо отметить, что пик с энергией 1633 кэВ получается не из одного гамма-кванта, а из двух гамма-квантов с энергиями 570 кэВ и 1063 кэВ, что приводит к искажению результата получаемой энергии вследствие того, что два гамма-кванта испытывают больше комптоновских рассеяний, чем один гамма-квант, поэтому регистрируемая энергия будет отличаться от теоретической. Также пик 570 кэВ смещается в большую сторону поскольку гамма-квант 570 кэВ складывается с двумя рентгеновским гамма-квантами с энергией 15 кэВ(с вероятностью 2.3%) и 88 кэВ(с вероятностью 7.4%). Вероятность испускания одного гамма-кванта 570 кэВ (без рентгеновских гамма-квантов) составляет 6.7%

Для этих значений энергии гамма-квантов были замерены энергетические разрешения, источники располагались на высоте 415 мм, т.е. в центре мишени. Результаты представлены в таблице 1 и на рисунке 2.12

Таблица 1. Результаты измерения энергетического разрешения детектора iDREAM для разных энергий гамма-квантов в центре мишени

Табличное значение	Зарегистрированное	Энергетическое
энергии, кэВ	значение энергии, кэВ	разрешение, %
570	590 ± 2	12.2 ± 0.2
662	661.0 ± 1.3	11.82 ± 0.02
1633	1632 ± 3	8.75 ± 0.08

Все три точки в пределах погрешностей легли на кривую зависимости $\delta(E) = \frac{a}{\sqrt{b+E}}$, где E – энергия гамма-кванта, а и b – постоянные коэффициенты, полученные с помощью фитирования в пакете ROOT:

- 1) $a = (12.8 \pm 0.5) \sqrt{M \ominus B} \cdot \%$
- 2) $b = (0.52 \pm 0.05)$ M₉B.

Рисунок 2.12 – Зависимость энергетического разрешения детектора от энергии частицы

Зная вид зависимости $\delta(E)$, получаем, что при энергии E = 1 МэВ энергетическое разрешение детектора составляет $\delta = (10.4 \pm 0.7)\%$. Полученное значение, с учетом погрешности, сопоставимо с разрешением современных больших жидкосцинтилляционных спектрометров, лежащим в диапазоне 8-10%

ЗАКЛЮЧЕНИЕ

В ходе данной работы получены следующие основные результаты:

- Проведена калибровка детектора iDREAM источниками гамма-квантов ¹³⁷Cs и ²⁰⁷Bi, перемещаемыми вдоль вертикальной оси детектора.
- На основе калибровочных данных получено значение неоднородности светособирания детектора относительно геометрического центра детектора, которое составило (-15%, +22%)
- Исследовано влияние неоднородности светособирания на энергетическое разрешение детектора
- Измерено энергетическое разрешение в центре мишени детектора из расчета на 1 МэВ выделившейся в детекторе энергии, которое составило $\delta = (10.4 \pm 0.7)\%$

СПИСОК ЛИТЕРАТУРЫ

- 1. Измерение энерговыработки энергетического реактора методом регистрации нейтрино / В. Коровкин [и др.] // Атомная энергия, Т.65, вып.3. 1988. сент.
- 2. The Bugey-3 neutrino detector / M. Abbes [и др.] // Nucl. Instrum. Meth. A. 1996. т. 374. с. 164—187.
- Strumia A., Vissani F. Precise quasielastic neutrino/nucleon cross-section // Phys. Lett. B. — 2003. — т. 564. — с. 42—54. — arXiv: astro-ph/0302055.
- Study of reactor anti-neutrino interaction with proton at Bugey nuclear power plant / Y. Declais [и др.] // Phys. Lett. B. — 1994. — т. 338. c. 383—389.
- 5. Improved calculation of the energy release in neutron-induced fission / X. Ma [и др.] // Physical Review C. — 2013. — июль. — т. 88.
- 6. Копейкин В., Микаэлян Л. Анализ зависимости числа событий в реакции $\bar{\nu_e} + p \rightarrow n + e^+$ // Препринт ИАЭ-6419/2. 2006. т. 9.
- 7. Жидкий сцинтиллятор на основе линейного алкилбензола / И. Немченок [и др.] // Письма в ЭЧАЯ. — 2011. — т. 9. — с. 218—227.
- Промышленный детектор iDREAM для мониторинга режимов работы атомных реакторов нейтринным методом / М. Б. Громов [и др.] // Вестник Московского университета. Серия 3: Физика, астрономия. — М., 2015. — 3. — ISSN 0579-9392.
- 9. Техническое описание опытного образца детектора iDREAM / М. Б. Громов [и др.]. 2016.