
ATLAS+CMS Higgs combination: what have we learned?

- This discussion is based on the run-1 ATLAS+CMS Higgs combination paper
 - This is still the most relevant one for combined measurements of Higgs properties
 - I was ATLAS editor for this paper
- Some theoretical considerations
- Overview of main results
- This is therefore NOT a discussion of the difficulties encountered in each individual measurement (an individual measurement corresponds ideally to a specific Higgs production and decay

• In BSM physics, both gg to ZH and tHq/tHW production processes may play an important role through interference effects

Production	Cross sec	ction [pb]	Order of
process	$\sqrt{s} = 7 \text{ TeV}$	$\sqrt{s} = 8 \text{ TeV}$	calculation
ggF	15.0 ± 1.6	19.2 ± 2.0	NNLO(QCD)+NLO(EW)
VBF	1.22 ± 0.03	1.58 ± 0.04	$NLO(QCD+EW)+\sim NNLO(QCD)$
WH	0.577 ± 0.016	0.703 ± 0.018	NNLO(QCD)+NLO(EW)
ZH	0.334 ± 0.013	0.414 ± 0.016	NNLO(QCD)+NLO(EW)
[ggZH]	0.023 ± 0.007	0.032 ± 0.010	NLO(QCD)
bbH	0.156 ± 0.021	0.203 ± 0.028	5FS NNLO(QCD) + 4FS NLO(QCD)
ttH	0.086 ± 0.009	0.129 ± 0.014	NLO(QCD)
tH	0.012 ± 0.001	0.018 ± 0.001	NLO(QCD)
Total	17.4 ± 1.6	22.3 ± 2.0	

- Today we have N³LO calculations for ggF, etc, etc (see K.Melnikov at LHCP)
- Does this help? Actually, less now than at the time of discovery. Why?
 - 1. Experiments have learned to do Higgs fiducial measurements, which are insensitive to the inclusive calculations
 - 2. Generic coupling measurements are expressed as ratios

K. Melnikov

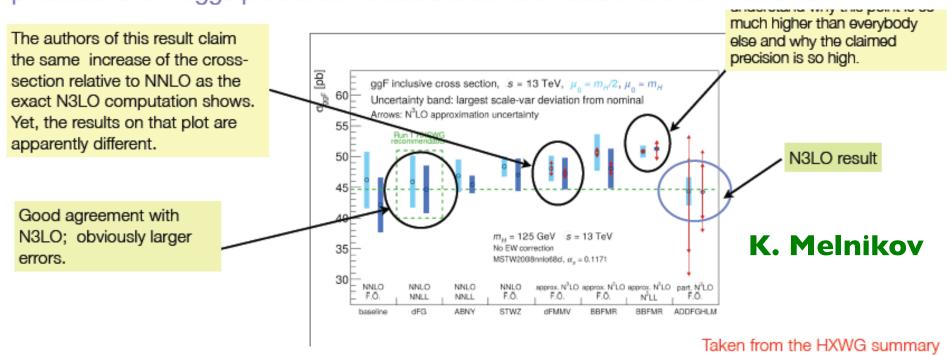
Instead, I want to spend most of my time talking about three recent results that may have a potential to significantly affect the way we think about the possibility to do precision Higgs physics at hadron colliders. They include:

1) the N³LO QCD calculation of the inclusive Higgs boson production in gluon fusion;

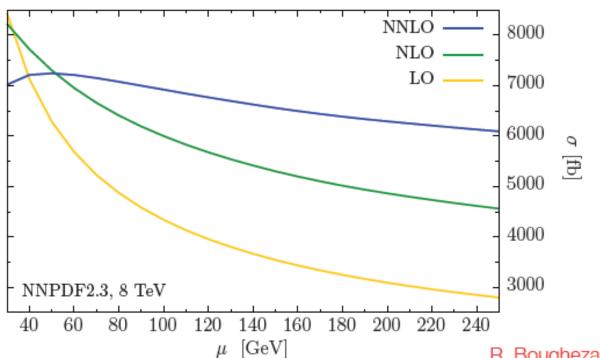
Anastasiou, Duhr, Dulat, Furlan, Herzog, Mitzlberger etc.

2) the NNLO QCD calculation of the fiducial cross sections for the production of a Higgs boson and a jet at the LHC;

Boughezal Capla K M. Petriello Schulze


Boughezal, Caola, K.M., Petriello, Schulze Boughezal, Focke, Giele, Liu, Petriello Chen, Gehrmann, Glover, Jacqueir

3) the NNLO QCD calculation of the fiducial cross section for Higgs production in weak boson fusion at the LHC.


Cacciari, Dreyer, Kalberg, Salam, Zanderighi

These three results are important since they give us a new perspective on the <u>ultimate precision</u> achievable on the theory side in the exploration of Higgs boson physics at the LHC. Another important lesson that these results seem to teach us is that -- beyond a certain level -- fixed order results are indispensable and can not be substituted by their approximate estimates.

Estimates of N³LO Higgs production cross sections were attempted before an exact calculation using various approximations (essentially, emission or soft gluons or powers of π are assumed to be the dominant source of QCD corrections). The HXWG has assembled various predictions for the Higgs cross section made before the N³LO result became available. The picture below should tell us about the success or failure of these predictions. But it does not...; it leaves more questions than answers. However, the correct answer is important since it will teach us if approximate predictions for Higgs production cross section are reliable and to what extent.

The NNLO QCD corrections to H+jet production at the LHC were computed recently. They increase the H+jet production cross section by O(20%) and significantly reduce the scale dependence uncertainty. This is similar to corrections to the inclusive Higgs production cross section although corrections to H+j are slightly smaller.

$$\sigma_{\rm LO} = 3.9^{+1.7}_{-1.1} \text{ pb}$$

$$\sigma_{\rm NLO} = 5.6^{+1.3}_{-1.1} \text{ pb}$$

$$\sigma_{\text{NNLO}} = 6.7^{+0.5}_{-0.6} \text{ pb}$$

The cross sections for the anti-k_t algorithm with the jet transverse momentum cut of 30 GeV at the 8 TeV LHC.

R. Boughezal, F. Caola, K.M., F. Petriello, M. Schulze

K. Melnikov

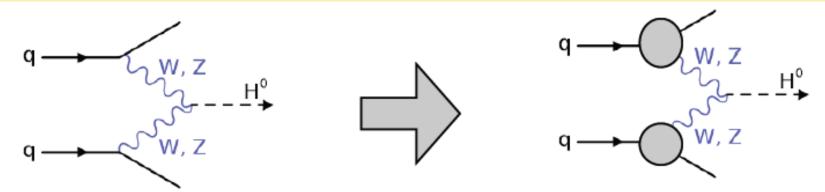
Using these results and the N³LO computation of the Higgs total cross section, one can find the fraction of Higgs boson events without detectable jet radiation.

The drawback of these results is that they still can not be used to describe fiducial volume cross sections since decays of the Higgs boson are not included. This is, however, easy to do since the Higgs boson is a scalar particle and no spin correlations are involved. What makes this calculation even more interesting is that there are measurements of the ATLAS and CMS collaborations at the 8 TeV LHC that can be directly compared to the results of the fiducial volume calculation (results are shown for infinitely heavy top quark).

Atlas cuts on photons and iets

$${
m anti-k}_t, \quad \Delta R = 0.4, \quad p_{j\perp} = 30 \ {
m GeV, abs}(y_j) < 4.4$$
 $p_{\perp,\gamma_1} > 43.75 \ {
m GeV}, \quad p_{\perp,\gamma_2} = 31.25 \ {
m GeV}, \quad \Delta R_{\gamma j} > 0.4$

$$\sigma_{1j,\mathrm{ATLAS}}^{\mathrm{fid}} = 21.5 \pm 5.3 \mathrm{(stat)} \pm 2.3 \mathrm{(syst)} \pm 0.6$$
lum fb


$$\sigma_{\text{LO}}^{\text{fid}} = 5.43^{+2.32}_{-1.5} \text{ fb}$$
 $\sigma_{\text{NLO}}^{\text{fid}} = 7.98^{+1.76}_{-1.46} \text{ fb}$ $\sigma_{\text{NNLO}}^{\text{fid}} = 9.46^{+0.56}_{-0.84} \text{ fb}$

The difference between the ATLAS H+j measurements and the SM prediction is close to two standard deviations; the ratio of central values is larger than in the inclusive case.

K. Melnikov

F. Caola, K.M., M. Schulze

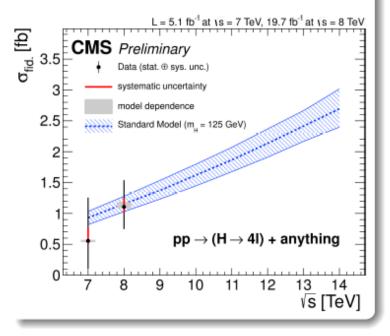
The QCD corrections obtained in this approach are small (O(5%) NLO, O(3%) NNLO); it then seemed natural to assume that this size of QCD corrections will be indicative for the fiducial cross sections.

However, this assumption turns out to be incorrect and, in fact, one can get larger O(6-10%) corrections for fiducial (WBF cuts) cross sections and kinematic distributions. Often, the shape of those corrections seems rather different from both the NLO and/or parton shower predictions. The message -- again -- seems to be that fixed order computations are required beyond certain level of precision; approximate results may

indicate their magnitude but not much beyond t

indicate their madnitude but not much beyond	1 1	$\sigma^{\rm nocuts}[{ m pb}]$	$\sigma^{ m VBF~cuts}[m pb]$
WBF cuts	LO	$4.032^{+0.057}_{-0.069}$	[1]
$p_{\perp}^{j_{1,2}} > 25 \text{ GeV}, y_{j_{1,2}} < 4.5,$	NLO	$3.929^{+0.024}_{-0.023}$	$0.876^{+0.008}_{-0.018}$
$\Delta y_{j_1,j_2} = 4.5, m_{j_1,j_2} > 600 \text{ GeV},$	NNLO	$3.888^{+0.016}_{-0.012}$	$0.826^{+0.013}_{-0.014}$
$y_{i}, y_{i} < 0, \Delta R > 0.4$			

Cacciari, Dreyer, Kalberg, Salam, Zanderighi physics discussion, September 2020


Production	Cross section [pb]		Order of
process	$\sqrt{s} = 7 \text{ TeV}$	$\sqrt{s} = 8 \text{ TeV}$	calculation
ggF	15.0 ± 1.6	19.2 ± 2.0	NNLO(QCD)+NLO(EW)
VBF	1.22 ± 0.03	1.58 ± 0.04	$NLO(QCD+EW)+\sim NNLO(QCD)$
WH	0.577 ± 0.016	0.703 ± 0.018	NNLO(QCD)+NLO(EW)
ZH	0.334 ± 0.013	0.414 ± 0.016	NNLO(QCD)+NLO(EW)
[ggZH]	0.023 ± 0.007	0.032 ± 0.010	NLO(QCD)
bbH	0.156 ± 0.021	0.203 ± 0.028	5FS NNLO(QCD) + 4FS NLO(QCD)
ttH	0.086 ± 0.009	0.129 ± 0.014	NLO(QCD)
tH	0.012 ± 0.001	0.018 ± 0.001	NLO(QCD)
Total	17.4 ± 1.6	22.3 ± 2.0	

- Today we have N³LO calculations for ggF, etc, etc (see K.Melnikov at LHCP)
- Does this help? Actually, less now than at the time of discovery. Why?
 - Experiments have learned to do Higgs fiducial measurements, which are insensitive to the inclusive calculations
 - Generic coupling measurements are expressed as ratios

Theory: need for fiducial predictions, jet binning

Cross sections: fiducial measurements.

Fiducial σ at 7 and 8 TeV

Fiducial σ CMS (8 TeV)

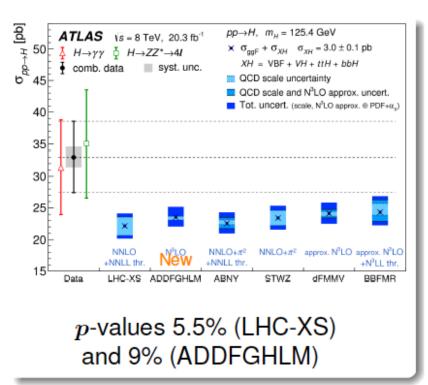
$$\sigma_{
m fid} = 1.11^{+0.41}_{-0.35} ({
m stat})^{+0.14}_{-0.10} ({
m syst})^{+0.08}_{-0.02} ({
m mod}) \, {
m fb}$$
 $\sigma_{
m fid}^{
m SM} = 1.15^{+0.12}_{-0.13} \, {
m fb}$
 $\sigma_{
m fid} = 32 \pm 10 ({
m stat}) \pm 3 ({
m syst}) \, {
m fb}$
 $\sigma_{
m fid}^{
m SM} = 31^{+4}_{-3} \, {
m fb}$
 $\sigma_{
m fid}^{
m SM} = 31^{+4}_{-3} \, {
m fb}$

Fiducial σ ATLAS (8 TeV)

$$\sigma_{\text{fid}} = 2.11^{+0.53}_{-0.47}(\text{stat})^{+0.08}_{-0.08}(\text{syst}) \,\text{fb}$$

$$\sigma_{\text{fid}}^{\text{SM}} = 1.30^{+0.13}_{-0.13} \,\text{fb}$$
 $H \to 4\ell$

$$\sigma_{
m fid} = 43.2 \pm 9.4 {
m (stat)}^{+3.2}_{-2.9} {
m (syst)} \pm 1.2 {
m (lumi)} \, {
m fb}$$
 $\sigma_{
m fid}^{
m SM} = 30.5 \pm 3.3 \, {
m fb}$
 $H \to \gamma \gamma$


$H o WW^* o e u \mu u$ fiducial ggH cross section ATLAS (8 TeV)

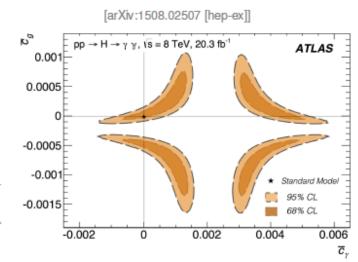
$$\begin{split} \sigma_{\mathrm{fid,0j}}^{ggH} &= 27.6^{+5.4}_{-5.3}(\mathrm{stat})^{+4.1}_{-3.9}(\mathrm{syst})\,\mathrm{fb} & \sigma_{\mathrm{fid,1j}}^{ggH} &= 8.3^{+3.1}_{-3.0}(\mathrm{stat})^{+3.7}_{-3.5}(\mathrm{syst})\,\mathrm{fb} \\ \sigma_{\mathrm{fid,0j}}^{ggH,\mathrm{SM}} &= 19.9 \pm 3.3\,\mathrm{fb} & \sigma_{\mathrm{fid,1j}}^{ggH,\mathrm{SM}} &= 7.3 \pm 1.8\,\mathrm{fb} \end{split}$$

Theory: need for fiducial predictions, jet binning

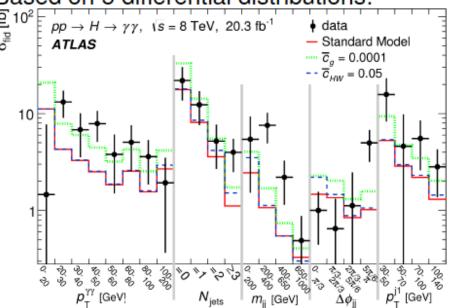
Cross sections: combination.

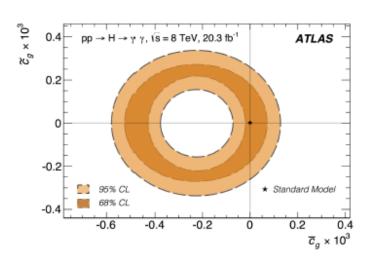
- Sacrifice some model independence for combining $H \to \gamma \gamma$ and $H \to 4\ell$ to gain statistical power
 - Extrapolate to full photon and lepton phase space
 - Fiducial acceptance of 60 \pm 1% ($H \to \gamma \gamma$) and 47 \pm 1% ($H \to 4\ell$)
 - Assume SM branching fractions

g ATLAS $pp \rightarrow H$ 👆 data, tot. unc. 🚃 syst. unc $s = 8 \text{ TeV}, 20.3 \text{ fb}^{-1}$ anti-k, R = 0.4, $p_{\tau}^{\text{jet}} > 30 \text{ GeV}$ $= VBF + VH + t\bar{t}H + bbH$ Ratio to NNLOPS


D. Fro 6/23 er 2020

Theory: need for fiducial predictions, jet binning


Cross sections: ATLAS $H o \gamma \gamma$ interpretation.


- Probe tensor structure and Higgs interactions
- Non-SM terms in effective Lagrangian describing Higgs—gauge boson interactions

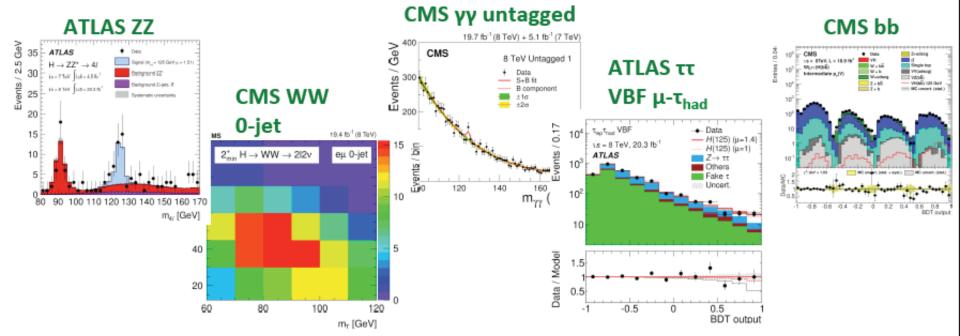
$$\mathcal{L} = \bar{c}_{\gamma} O_{\gamma} + \bar{c}_{g} O_{g} + \bar{c}_{HW} O_{HW} + \bar{c}_{HB} O_{g} + \tilde{c}_{\gamma} \tilde{O}_{\gamma} + \tilde{c}_{g} \tilde{O}_{g} + \tilde{c}_{HW} \tilde{O}_{HW} + \tilde{c}_{HB} \tilde{O}_{g}$$

Based on 5 differential distributions:

D. Froi

Production	Cross section [pb]		Order of
process	$\sqrt{s} = 7 \text{ TeV}$	$\sqrt{s} = 8 \text{ TeV}$	calculation
ggF	15.0 ± 1.6	19.2 ± 2.0	NNLO(QCD)+NLO(EW)
VBF	1.22 ± 0.03	1.58 ± 0.04	$NLO(QCD+EW)+\sim NNLO(QCD)$
WH	0.577 ± 0.016	0.703 ± 0.018	NNLO(QCD)+NLO(EW)
ZH	0.334 ± 0.013	0.414 ± 0.016	NNLO(QCD)+NLO(EW)
[ggZH]	0.023 ± 0.007	0.032 ± 0.010	NLO(QCD)
bbH	0.156 ± 0.021	0.203 ± 0.028	5FS NNLO(QCD) + 4FS NLO(QCD)
ttH	0.086 ± 0.009	0.129 ± 0.014	NLO(QCD)
tH	0.012 ± 0.001	0.018 ± 0.001	NLO(QCD)
Total	17.4 ± 1.6	22.3 ± 2.0	

- Today we have N³LO calculations for ggF, etc, etc (see K.Melnikov at LHCP)
- Does this help? Actually, less now than at the time of discovery. Why?
 - 1. Experiments have learned to do Higgs fiducial measurements, which are insensitive to the inclusive calculations
 - 2. Generic coupling measurements are expressed as ratios


Mainly ggF

Decay / Production	Untagged	VBF	VH	ttH
н→γγ				
H→ZZ→4I				
H→WW→2l2v				
H → π				
H→bb				
н→μμ				

Combined

- Other production channels such as bbH, gg to ZH, tH are included resp. in ggF, ZH and ttH since they are not accessible as specific channels (nor will they be in run 2)
- With much larger statistics, it would be interesting to measure specifically the signal strength or effective coupling squared for any of the above i to H to f processes, where i denotes the production and f denotes the decay

Many different final discriminant distributions combined

- Purity varies between categories (especially for production modes)
- A total of O(100) categories for each experiment are combined

$$\begin{split} n_{\text{signal}}(k) &= \mathcal{L}(k) \times \sum_{i} \sum_{f} \left\{ \sigma_{i} \times A_{i}^{f}(k) \times \varepsilon_{i}^{f}(k) \times \text{BR}^{f} \right\}, \\ &= \mathcal{L}(k) \times \sum_{i} \sum_{f} \mu_{i} \mu^{f} \left\{ \sigma_{i}^{\text{SM}} \times A_{i}^{f}(k) \times \varepsilon_{i}^{f}(k) \times \text{BR}_{\text{SM}}^{f} \right\} \end{split} \\ \text{L: integrated luminosity,} \\ &= \mathcal{L}(k) \times \sum_{i} \sum_{f} \mu_{i} \mu^{f} \left\{ \sigma_{i}^{\text{SM}} \times A_{i}^{f}(k) \times \varepsilon_{i}^{f}(k) \times \text{BR}_{\text{SM}}^{f} \right\} \end{split} \\ \text{E: efficiency}$$

Channel	Referenc	es for	Signal stre	ength [μ]	Signal sign	Signal significance $[\sigma]$		
	individual pu	blications	from	results in this	paper (Section	paper (Section 5.2)		
	ATLAS	CMS	ATLAS	CMS	ATLAS	CMS		
$H o \gamma \gamma$	[51]	[52]	$1.15^{+0.27}_{-0.25}$	$1.12^{+0.25}_{-0.23}$	5.0	5.6		
			$\binom{+0.26}{-0.24}$	(+0.24) (-0.22)	(4.6)	(5.1)		
$H \to ZZ \to 4\ell$	[53]	[54]	$1.51^{+0.39}_{-0.34}$	$1.05^{+0.32}_{-0.27}$	6.6	7.0		
			$\binom{+0.33}{-0.27}$	$\binom{+0.31}{-0.26}$	(5.5)	(6.8)		
$H \to WW$	[55,56]	[57]	$1.23^{+0.23}_{-0.21}$	$0.91^{+0.24}_{-0.21}$	6.8	4.8		
			$\binom{+0.21}{-0.20}$	$\binom{+0.23}{-0.20}$	(5.8)	(5.6)		
H o au au	[58]	[59]	$1.41^{+0.40}_{-0.35}$	$0.89^{+0.31}_{-0.28}$	4.4	3.4		
			$\binom{+0.37}{-0.33}$	$\binom{+0.31}{-0.29}$	(3.3)	(3.7)		
$H \rightarrow bb$	[38]	[39]	$0.62^{+0.37}_{-0.36}$	$0.81^{+0.45}_{-0.42}$	1.7	2.0		
			$\binom{+0.39}{-0.37}$	$\binom{+0.45}{-0.43}$	(2.7)	(2.5)		
$H o \mu \mu$	[60]	[61]	-0.7 ± 3.6	0.8 ± 3.5				
			(±3.6)	(±3.5)				
ttH production	[28, 62, 63]	[65]	$1.9^{+0.8}_{-0.7}$	$2.9^{+1.0}_{-0.9}$	2.7	3.6		
			$\binom{+0.72}{-0.66}$	$\binom{+0.88}{-0.80}$	(1.6)	(1.3)		

- Purity varies between categories (especially for production modes)
- A total of O(100) categories for each experiment are combined

Signal yield
$$\begin{aligned} n_{\text{signal}}(k) &= \mathcal{L}(k) \times \sum_{i} \sum_{f} \left\{ \sigma_{i} \times A_{i}^{f}(k) \times \boldsymbol{\varepsilon}_{i}^{f}(k) \times \text{BR}^{f} \right\}, \\ &= \mathcal{L}(k) \times \sum_{i} \sum_{f} \mu_{i} \mu^{f} \left\{ \sigma_{i}^{\text{SM}} \times A_{i}^{f}(k) \times \boldsymbol{\varepsilon}_{i}^{f}(k) \times \text{BR}^{f}_{\text{SM}} \right\} \end{aligned}$$
 E: integrated luminosity, A: acceptance, E: efficiency

- Cannot measure σ_i,BR^f or μ_i,μ_f at the same time, need to measure ratios or make additional assumptions
 Measuring ratios is done through a generic parameterisation of the
- above yields or of σ_i x BRf, such that there is no dependence on the inclusive theory cross section uncertainties (signal strength measurements) or such that one tests directly for deviations of the couplings of the Higgs boson from their SM values (κ framework)
- Additional assumptions in the narrow-width approximation allow measurements of production or decay signal strengths
- Additional assumptions about BSM physics (for example RR RSM = 0) allow measurements of absolute coupling strengths $\Gamma_{II} = \frac{\kappa_H^2 \cdot \Gamma_H^{SM}}{\Gamma_{II}}$

Production	Loops	Interference	Multip	olicative factor
$\sigma(ggF)$	✓	b-t	$\kappa_{\rm g}^2 \sim$	$1.06 \cdot \kappa_{\rm t}^2 + 0.01 \cdot \kappa_{\rm b}^2 - 0.07 \cdot \kappa_{\rm t} \kappa_{\rm b}$
$\sigma(VBF)$	-	_	~	$0.74 \cdot \kappa_W^2 + 0.26 \cdot \kappa_Z^2$
$\sigma(WH)$	-	_	~	$\kappa_{\rm W}^2$
$\sigma(qq/qg \to ZH)$	_	_	~	$\kappa_{\rm Z}^2$
$\sigma(gg \to ZH)$	✓	Z-t	~	$2.27 \cdot \kappa_{\mathrm{Z}}^2 + 0.37 \cdot \kappa_{\mathrm{t}}^2 - 1.64 \cdot \kappa_{\mathrm{Z}} \kappa_{\mathrm{t}}$
$\sigma(ttH)$	_	_	~	$\kappa_{\rm t}^2$
$\sigma(gb \to WtH)$	_	W-t	~	$1.84 \cdot \kappa_{t}^2 + 1.57 \cdot \kappa_{W}^2 - 2.41 \cdot \kappa_{t} \kappa_{W}$
$\sigma(qb \to tHq)$	_	W-t	~	$3.4 \cdot \kappa_{\rm t}^2 + 3.56 \cdot \kappa_{\rm W}^2 - 5.96 \cdot \kappa_{\rm t} \kappa_{\rm W}$
$\sigma(bbH)$	_	_	~	$\kappa_{\rm b}^2$
Partial decay width				
Γ^{ZZ}	-	_	~	$\kappa_{\rm Z}^2$
Γ^{WW}	_	_	~	$\kappa_{\rm W}^2$
$\Gamma^{\gamma\gamma}$	✓	W-t	$\kappa_{\rm y}^2 \sim$	$1.59 \cdot \kappa_{W}^{2} + 0.07 \cdot \kappa_{t}^{2} - 0.66 \cdot \kappa_{W} \kappa_{t}$
$\Gamma^{\tau\tau}$	_	_	`~	κ_{τ}^2
Γ^{bb}	_	_	~	κ_{τ}^2 κ_{b}^2
$\Gamma^{\mu\mu}$	_	_	~	κ_{μ}^{2}
Total width for $BR_{BSM} = 0$				
				$0.57 \cdot \kappa_b^2 + 0.22 \cdot \kappa_W^2 + 0.09 \cdot \kappa_g^2 +$
$\Gamma_{ m H}$	✓	_	$\kappa_{\rm H}^2 \sim$	$+0.06 \cdot \kappa_{\tau}^{2} + 0.03 \cdot \kappa_{Z}^{2} + 0.03 \cdot \kappa_{c}^{2} +$
				$+0.0023 \cdot \kappa_{\gamma}^2 + 0.0016 \cdot \kappa_{Z\gamma}^2 +$
				$+ 0.0001 \cdot \kappa_{\rm s}^2 + 0.00022 \cdot \kappa_{\rm \mu}^{2'}$

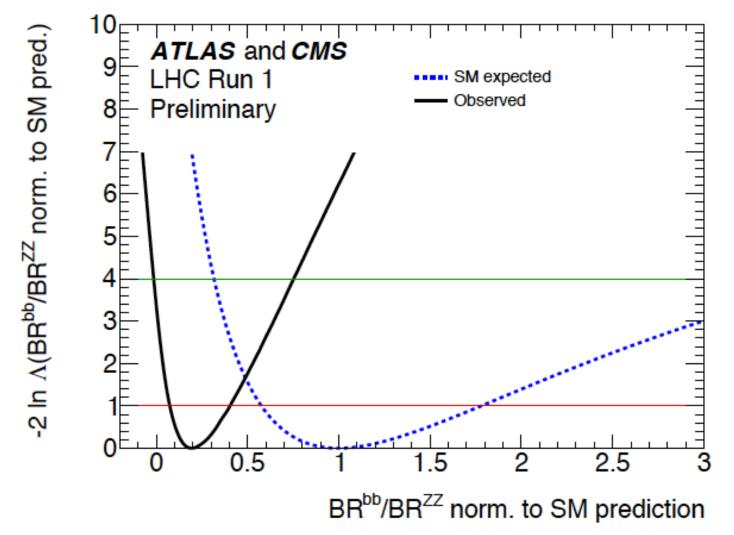
Production	Loops	Interference	Multiplicative factor
$\sigma(ggF)$	✓	b-t	$\kappa_{\rm g}^2 \sim 1.06 \cdot \kappa_{\rm t}^2 + 0.01 \cdot \kappa_{\rm b}^2 - 0.07 \cdot \kappa_{\rm t} \kappa_{\rm b}$
$\sigma(VBF)$	_	_	$\sim 0.74 \cdot \kappa_W^2 + 0.26 \cdot \kappa_Z^2$
$\sigma(WH)$	_	_	$\sim \kappa_{\rm W}^2$
$\sigma(qq/qg \to ZH)$	_	_	$\sim \kappa_{\rm Z}^2$
$\sigma(gg \to ZH)$	✓	Z-t	$\sim 2.27 \cdot \kappa_Z^2 + 0.37 \cdot \kappa_t^2 - 1.64 \cdot \kappa_Z \kappa_t$
$\sigma(ttH)$	_	_	$\sim \kappa_{\rm t}^2$
$\sigma(gb \to WtH)$	_	W-t	$\sim 1.84 \cdot \kappa_{t}^{2} + 1.57 \cdot \kappa_{W}^{2} - 2.41 \cdot \kappa_{t} \kappa_{W}$
$\sigma(qb \to tHq)$	_	W-t	$\sim 3.4 \cdot \kappa_t^2 + 3.56 \cdot \kappa_W^2 - 5.96 \cdot \kappa_t \kappa_W$
$\sigma(bbH)$	_	_	$\sim \kappa_{\rm b}^2$
Partial decay width			
Γ^{ZZ}	_	_	~ κ ² _Z
Γ^{WW}	_	_	$\sim \kappa_{\rm W}^2$
$\Gamma^{\gamma\gamma}$	✓	W-t	$\kappa_v^2 \sim 1.59 \cdot \kappa_W^2 + 0.07 \cdot \kappa_t^2 - 0.66 \cdot \kappa_W \kappa_t$
$\Gamma^{\tau au}$	_	_	$\sim \kappa_{\tau}^2$
Γ^{bb}	_	_	$\sim \kappa_{\rm b}^2$
$\Gamma^{\mu\mu}$	_	_	$\sim \kappa_{\mu}^{2}$

The numerical factors depend on m_H but not only! They account for state-of-theart QCD and EW corrections, so eg gg fusion and H to gg decay will not have the same expression exactly. Worse, the factors depend on kinematics!! D. Froidevaux, CERN

The product of the cross section and the branching ratio of $i \to H \to f$ can then be expressed using the ratios as:

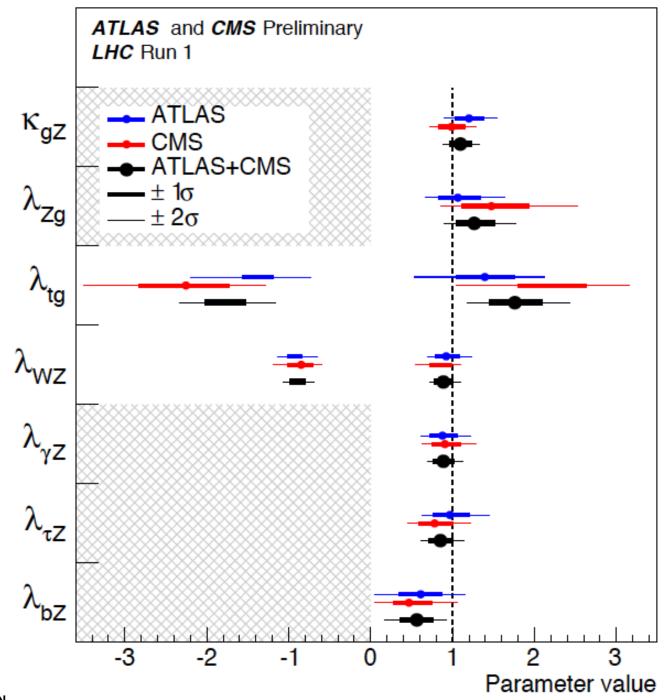
$$\sigma_i \cdot BR^f = \sigma(gg \to H \to ZZ) \times \left(\frac{\sigma_i}{\sigma_{ggF}}\right) \times \left(\frac{BR^f}{BR^{ZZ}}\right),$$
 (10)

where $\sigma(gg \to H \to ZZ) = \sigma_{ggF} \cdot BR^{ZZ}$ under the narrow width approximation. With $\sigma(gg \to H \to ZZ)$ constraining the normalisation, the ratios in Eq. 10 can be determined separately, based on the five production processes (ggF, VBF, WH, ZH and ttH) and five decay modes $(H \to ZZ, H \to WW, H \to \gamma\gamma, H \to \tau\tau \text{ and } H \to bb)$. The combined fit results can be presented as a function of nine parameters of interest: one reference cross section times branching ratio, $\sigma(gg \to H \to ZZ)$, four ratios of production cross sections, σ_i/σ_{ggF} and four ratios of branching ratios, BR^f/BR^{ZZ} as shown in Table 6.

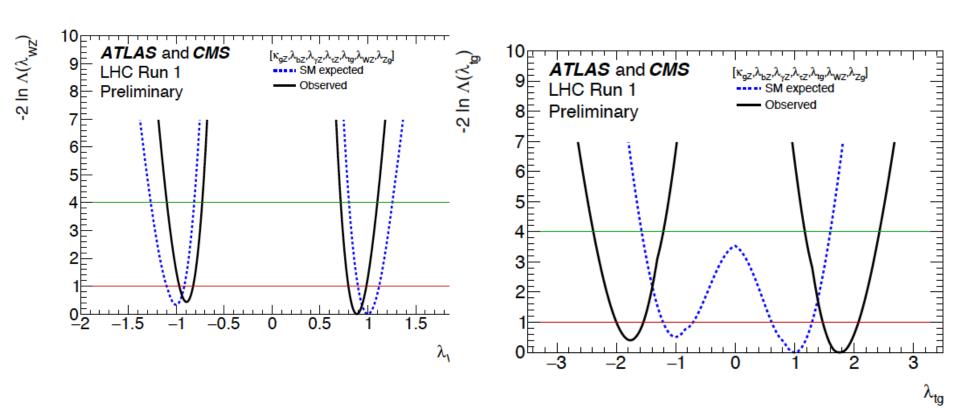

- The equation above is free of any theory uncertainties on the inclusive cross sections. However, the yields in each channel assume the SM Higgs boson production and decay kinematics and are subject to theory uncertainties (QCD scales, PDFs, jet binning, parton shower, underlying event).
- Note that in this parameterisation, as in all signal strength parameterisations, the assumptions for the unaccessible decay channels are different from the ones in the κ framework.
- Here H to cc and H to gg are included in H to bb. And H to Zγ is included in H to γγ.

Parameter	SM prediction	Best-fit	Unce	rtainty	В	est-fit	Uncer	tainty	В	est-fit	Uncer	rtainty
		value	Stat	Syst	v	alue	Stat	Syst	v	alue	Stat	Syst
		ATL	AS+CMS				TLAS			(CMS	
$\sigma(gg \rightarrow H \rightarrow ZZ)$ (pb)	0.513 ±0.057	0.58 ^{+0.11} _{-0.10} (^{+0.11} _{-0.10})	+0.11 -0.10 (^{+0.11} _{-0.09})	+0.03 -0.02 (+0.03)	0.76	+0.19 -0.17 (+0.16) (-0.14)	+0.19 -0.16 (+0.16) (-0.13)	+0.05 -0.04 (+0.04) (-0.03)	0.44	+0.14 -0.11 (+0.15) (-0.13)	+0.13 -0.11 (^{+0.15} _{-0.13})	+0.05 -0.03 (+0.04)
$\sigma_{\rm VBF}/\sigma_{\rm ggF}$	0.082 ±0.009	0.11 ^{+0.03} _{-0.03} (^{+0.03} _{-0.02})	+0.03 -0.02 (+0.02)	+0.02 -0.01 (+0.02)	0.08	+0.03 -0.03 (+0.04)	+0.03 -0.02 (+0.04)	+0.02 -0.01 (+0.02)	0.14	+0.07 -0.05 (+0.04)	+0.06 -0.05 (+0.04)	+0.04 -0.02 (+0.02)
$\sigma_{WH}/\sigma_{\rm ggF}$	0.037 ±0.004	0.03 ^{+0.03} _{-0.03} (^{+0.02} _{-0.02})	+0.02 -0.02 (+0.02)	+0.01 -0.01 (+0.01 (-0.01)	0.05	+0.04 -0.03 (+0.03) (-0.02)	+0.03 -0.02 (+0.03)	+0.02 -0.01 (+0.02)	0.01	+0.04 -0.04 (+0.03)	+0.04 -0.03 (+0.03)	+0.02 -0.02 (+0.02)
$\sigma_{ZH}/\sigma_{\rm ggF}$	0.022 ±0.002	0.07 ^{+0.04} _{-0.03} (^{+0.02} _{-0.01})	+0.03 -0.03 (+0.01)	+0.02 -0.02 (+0.01)	0.01	+0.03 -0.01 (+0.03) (-0.01)	+0.02 -0.01 (+0.02)	+0.02 -0.01 (+0.01 (-0.01)	0.13	+0.08 -0.05 (+0.02)	+0.06 -0.05 (+0.02)	+0.04 -0.03 (+0.01)
$\sigma_{ttH}/\sigma_{\rm ggF}$	0.0067 ±0.0010	0.022 ^{+0.007} _{-0.006} (^{+0.004} _{-0.004})	+0.005 -0.005 (+0.003)	+0.004 -0.003 (+0.003)	0.013	+0.007 -0.005 (+0.006) (-0.004)	+0.005 -0.004 (+0.005)	+0.004 -0.003 (+0.004)	0.034	+0.016 -0.012 (+0.007)	+0.012 -0.010 (+0.005) (-0.004)	+0.010 -0.006 (+0.004)
BRWW/BRZZ	8.10 ± < 0.01	6.8 ^{+1.7} _{-1.3} (^{+2.2} _{1.7})	+1.5 -1.2 (^{+2.0})	+0.7 -0.5 (+0.9)	6.5	+2.2 -1.6 (+3.5)	+2.0 -1.5 (+3.3)	+0.9 -0.6 (+1.3)	7.2	+2.9 -2.1 (+3.2)	+2.6 -1.8 (+2.9)	+1.3 -0.9 (^{+1.4})
$BR^{\gamma\gamma}/BR^{ZZ}$	0.085 ±0.001	0.069 ^{+0.018} _{-0.015} (^{+0.025} _{-0.019})	+0.018 -0.014 (+0.024 (-0.019)	+0.004 -0.003 (+0.006)	0.063	+0.024 -0.018 (+0.040) (-0.027)	+0.023 -0.017 (+0.039)	+0.008 -0.005 (+0.011 (-0.006)	0.079	+0.033 -0.023 (+0.035) (-0.025)	+0.032 -0.023 (+0.034)	+0.010 -0.006 (+0.008)
$BR^{\tau\tau}/BR^{ZZ}$	2.36 ±0.05	1.8 ^{+0.6} _{-0.5} (^{+0.9} _{-0.7})	+0.5 -0.4 (+0.8)	+0.3 -0.2 (+0.5)	2.2	+1.1 -0.8 (+1.5)	+0.9 -0.6 (^{+1.3})	+0.6 -0.4 (+0.8 (-0.5)	1.6	+0.9 -0.6 (+1.2 (-0.9)	+0.8 -0.5 (*1.0)	+0.5 -0.3 (+0.7)
BR^{bb}/BR^{ZZ}	21.6 ±1.0	4.2 ^{+4.6} _{-2.6} (^{+16.9} _{-9.1})	+2.8 -2.0 (^{+13.9})	+3.6 -1.7 (+9.5)	9.7	+10.2 -5.8 (+29.4)	+7.4 -4.4 (*24.3)	+7.0 -3.8 (+16.7 (-5.4	3.7	+4.1 -2.4 (+29.4 (-11.9)	+3.1 -1.9 (*23.4)	+2.7 -1.6 (^{+17.7})

Parameter	SM prediction	Best-fit	Uncertainty				
		value	Stat	Expt	Thbgd	Thsig	
			ATL	AS+CMS			
$\sigma(gg \rightarrow H \rightarrow ZZ)$ (pb)	0.513 ±0.057	$0.58^{+0.11}_{-0.10}\ (^{+0.11}_{-0.10})$	$^{+0.11}_{-0.10}$ $^{+0.11}_{(-0.09)}$	$^{+0.02}_{-0.02}$ $^{+0.02}_{(-0.02)}$	$^{+0.01}_{-0.01}$ $^{+0.01}_{(-0.01)}$	$^{+0.01}_{-0.01}$ $^{+0.01}_{-0.01}$	
$\sigma_{ m VBF}/\sigma_{ m ggF}$	0.082 ±0.009	$0.11^{+0.03}_{-0.03}$ $\binom{+0.03}{-0.02}$	$^{+0.03}_{-0.02}$ $^{+0.02}_{(-0.02)}$	$^{+0.01}_{-0.01}$ $^{+0.01}_{(-0.01)}$	$^{+0.01}_{-0.00}$ $^{+0.00}_{(-0.00)}$	$^{+0.01}_{-0.01}$ $^{+0.01}_{-0.01}$	
			АТ	LAS+CMS			
$\sigma(gg ightarrow H ightarrow WW)$ (pb)	4.15 ±0.47	$3.97^{\ +0.63}_{\ -0.60} \ (^{+0.65}_{\ -0.62})$	+0.46 -0.45 (+0.47 (-0.46)	+0.32 -0.29 (+0.33 (-0.30)	+0.24 -0.23 (+0.26)	+0.16 -0.12 (+0.16) (-0.12)	
$\sigma_{ m VBF}/\sigma_{ m ggF}$	0.082 ±0.009	$0.11^{+0.03}_{-0.03}$ $(^{+0.03}_{-0.02})$	+0.03 -0.02 (+0.02)	+0.01 -0.01 (+0.01)	+0.01 -0.00 (+0.01 (-0.00)	+0.01 -0.01 (+0.01)	


- Overall precision on H to WW is the best
- But systematic uncertainty is much smaller for H to ZZ

- In this parameterisation, the rather high values of σ_{ttH} and σ_{ZH} observed, especially by CMS, are not observed in H to bb decays, so BR^{bb} decreases
- This is much less the case when measuring μ^{bb} assuming SM for production


σ and BR ratio model	Coupling-strength ratio mod	lel
$\sigma(gg \to H \to ZZ)$	$\kappa_{\rm gZ} = \kappa_{\rm g} \cdot \kappa_{\rm Z} / \kappa_{\rm H}$	In this
$\sigma_{V ext{BF}}/\sigma_{gg ext{F}}$		parameterization
$\sigma_{WH}/\sigma_{gg ext{F}}$		BR^{ZZ} , BR^{WW} , σ_{WH} ,
$\sigma_{ZH}/\sigma_{gg ext{F}}$		σ_{WH} and σ_{VBF} are
$\sigma_{ttH}/\sigma_{ggF}$	$\lambda_{\rm tg} = \kappa_{\rm t}/\kappa_{\rm g}$	function of κ_Z and κ_W
BR^{WW}/BR^{ZZ}	$\lambda_{\mathrm{WZ}} = \kappa_{\mathrm{W}}/\kappa_{\mathrm{Z}}$	e.g. for example
$BR^{\gamma\gamma}/BR^{ZZ}$	$\lambda_{\gamma \mathbf{Z}} = \kappa_{\gamma} / \kappa_{\mathbf{Z}}$	$\sigma_{WH}/\sigma_{ggF}^{\sim} (\lambda_{WZ}/\lambda_{zg})^2$
$BR^{\tau\tau}/BR^{ZZ}$	$\lambda_{\tau Z} = \kappa_{\tau} / \kappa_{Z}$	WII 861 , WZ, 26,
BR^{bb}/BR^{ZZ}	$\lambda_{\mathrm{bZ}} = \kappa_{\mathrm{b}}/\kappa_{\mathrm{Z}}$	

- In the κ framework, H to ZZ was chosen as a reference a long time ago (before data-taking).
- The relationships between the two parameterisations can be seen in the table above.
- The two are not equivalent, however, because the additional assumptions concerning small channels are different, namely in the κ framework $\kappa_c = \kappa_t$, $\kappa_\mu = \kappa_\tau$, and $\kappa_s = \kappa_b$

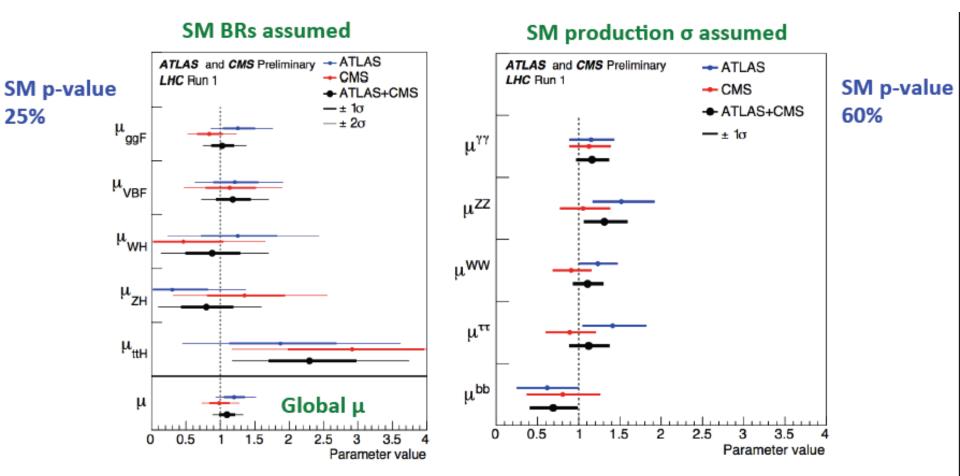
Parameter	Best-fit	Uncer	rtainty	Best-fit	Uncer	rtainty	Best-fit	Unce	rtainty
	value	Stat	Syst	value	Stat	Syst	value	Stat	Syst
	ATI	AS+CMS		A	TLAS			CMS	
$\kappa_{gZ} = \kappa_g \cdot \kappa_Z / \kappa_H$	$1.10^{+0.11}_{-0.11}$	+0.09	+0.07 -0.06	1.20 +0.16	+0.14 -0.14	+0.08	0.99 +0.14 -0.13	+0.12 -0.12	+0.07
	$\binom{+0.11}{-0.11}$	$\binom{+0.09}{-0.09}$	$\binom{+0.06}{-0.05}$	$\binom{+0.16}{-0.15}$	$\binom{+0.14}{-0.13}$	$\binom{+0.07}{-0.06}$	(+0.15) (-0.14)	$\binom{+0.13}{-0.12}$	$\binom{+0.07}{-0.06}$
$\lambda_{Zg} = \kappa_Z/\kappa_g$	1.26 ^{+0.23} _{-0.19} (^{+0.20} _{-0.17})	+0.18 -0.16 (+0.15 (-0.14)	+0.15 -0.12 (+0.12)	1.06 ^{+0.26} _{-0.21} (^{+0.28} _{-0.23})	+0.21 -0.18 (+0.23 (-0.20)	+0.14 -0.11 (+0.16)	1.47 ^{+0.44} _{-0.34} (^{+0.27} _{-0.23})	+0.34 -0.28 (+0.22 (-0.19)	+0.29 -0.19 (+0.17 (-0.12)
$\lambda_{tg} = \kappa_t/\kappa_g$	1.76 ^{+0.32} _{-0.29} (^{+0.29} _{-0.39})	+0.21 -0.20 (+0.20 (-0.21)	+0.23 -0.20 (+0.21)	1.39 ^{+0.34} _{-0.33} (^{+0.38} _{-0.54})	+0.25 -0.24 (+0.28)	+0.23 -0.22 (+0.26)	-2.25 ^{+0.51} _{-0.55} (^{+0.42} _{-0.64})	+0.39 -0.36 (+0.31 (-0.33)	+0.39 -0.30 (+0.29 (-0.46)
$\lambda_{WZ} = \kappa_W/\kappa_Z$	0.89 ^{+0.10} _{-0.09} (+0.12)	+0.09 -0.08 (+0.11 (-0.09)	+0.04 -0.04 (+0.05) (-0.04)	0.92 ^{+0.14} _{-0.12} (^{+0.18} _{-0.15})	+0.13 -0.11 (+0.16)	+0.05 -0.04 (+0.07 (-0.06)	-0.85 ^{+0.13} _{-0.15} (^{+0.17} _{-0.14})	+0.13 -0.11 (+0.15)	+0.07 -0.06 (+0.07 (-0.07)
$\lambda_{\gamma Z} = \kappa_{\gamma}/\kappa_{Z}$	0.89 ^{+0.11} _{-0.10} (^{+0.13} _{-0.12})	+0.11 -0.09 (+0.13 (-0.11)	+0.04 -0.03 (+0.04 (-0.03)	0.88 ^{+0.16} _{-0.14} (^{+0.20} _{-0.17})	+0.15 -0.13 (+0.19 (-0.17)	+0.04 -0.03 (+0.06)	0.91 ^{+0.17} _{-0.14} (^{+0.18} _{-0.16})	+0.16 -0.13 (+0.17 (-0.15)	+0.05 -0.04 (+0.05 (-0.04)
$\lambda_{\tau Z} = \kappa_{\tau}/\kappa_{Z}$	0.85 ^{+0.14} _{-0.12} (^{+0.17} _{-0.15})	+0.12 -0.10 (+0.14 (-0.13)	+0.07 -0.06 (+0.09)	0.97 ^{+0.22} _{-0.18} (^{+0.27} _{-0.23})	+0.18 -0.15 (+0.23 (-0.19)	+0.11 -0.09 (+0.14 (-0.12)	0.78 ^{+0.20} _{-0.17} (^{+0.23} _{-0.20})	+0.16 -0.15 (+0.19 (-0.17)	+0.10 -0.08 (+0.12 (-0.11)
$\lambda_{bZ} = \kappa_b/\kappa_Z$	0.56 ^{+0.18} _{-0.18} (^{+0.25} _{-0.22})	+0.12 -0.11 (+0.21 (-0.18)	+0.10 -0.11 (+0.14 (-0.11)	0.61 ^{+0.24} _{-0.24} (^{+0.36} _{-0.29})	+0.20 -0.18 (+0.31 (-0.24)	+0.14 -0.15 (+0.18)	0.47 ^{+0.26} _{-0.17} (^{+0.38} _{-0.37})	+0.17 -0.15 (+0.32 (-0.25)	+0.15 -0.16 (+0.20 (-0.17)

- In these measurements, despite the ratios, the theory uncertainties on the inclusive cross sections are cannot be removed.
- Nevertheless, some ratios have small theory uncertainties, eg λ_{vz} and λ_{wz}

- All parameters are allowed to have relative negative sign wrt each other in principle.
- Two can be tested currently since we have two processes involving interference effects which can be strong (gg to ZH and tH).
- As shown by the figures above, there is some sensitivity, but it is still marginal.
- This is similar to the better known κ_F vs κ_V plot

Stronger assumptions on signal strength: assess compatibility of measurements with SM

μ is the so called signal strength (μ=1 in the SM)


•
$$\mu_i = \frac{\sigma_i}{\sigma_i^{\text{SM}}}$$
 and $\mu^f = \frac{BR^f}{BR_{\text{SM}}^f}$ $\mu_i^f \equiv \frac{\sigma_i \cdot BR^f}{(\sigma_i \cdot BR^f)_{\text{SM}}} = \mu_i \times \mu^f$

• Most constrained parameterization: one single signal strength μ (and assuming the same at 7 and 8 TeV)

$$\mu = 1.09^{+0.11}_{-0.10} = 1.09^{+0.07}_{-0.07} \text{ (stat)} + 0.04_{-0.04} \text{ (expt)} + 0.03_{-0.03} \text{ (thbgd)} + 0.07_{-0.06} \text{ (thsig)}$$

- Expected uncertainties very similar to observed
- Signal theory uncertainty due to QCD scale and PDF as large as statistical uncertainty. Being reduced from the theory side

Stronger assumptions on signal strength

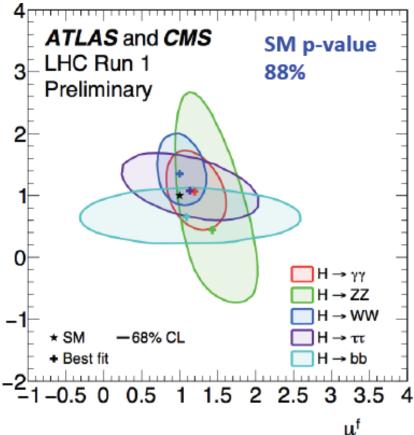
- Signal strengths in different channels are consistent with 1 (SM)
- Largest difference in ttH: 2.3σ excess with respect to SM

Stronger assumptions on signal strength

• Comparing likelihood of the best-fit with μ_{prod} =0 and μ^{decay} =0 we obtain:

Production process	Observed Significance(σ)	Expected Significance (σ)
VBF	5.4	4.7
WH	2.4	2.7
ZH	2.3	2.9
VH	3.5	4.2
ttH	4.4	2.0
Decay channel		
Η→ττ	5.5	5.0
H→bb	2.6	3.7

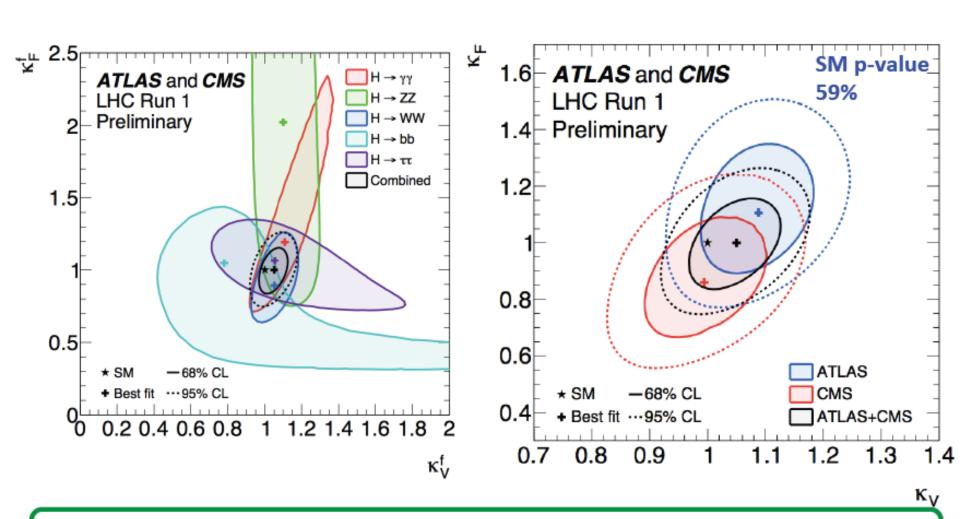
Combination largely increases the sensitivity


VBF and $H \rightarrow \tau \tau$ now established at over 5 σ . Same as ggF and $H \rightarrow ZZ$, $\gamma \gamma$, WW from single experiments

Stronger assumptions on signal strength

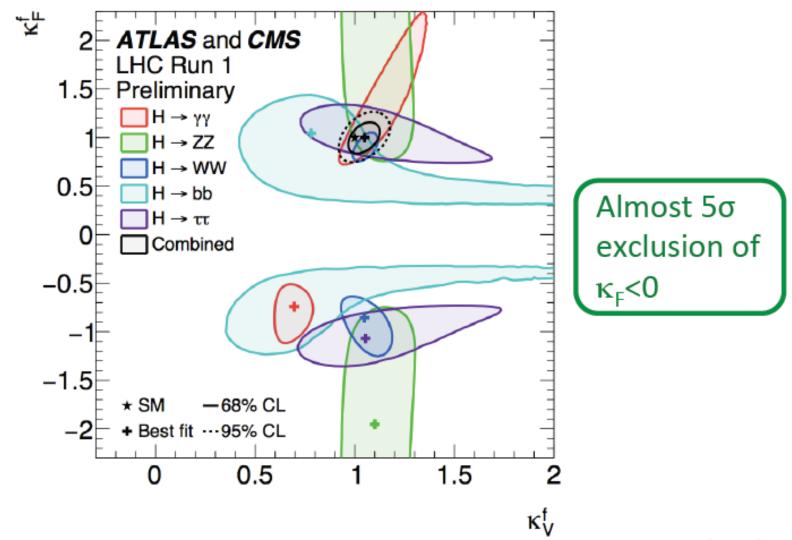
- Can also fit μ_V^f vs μ_F^f per decay:
 - $-\mu_V^f = \mu_{VBF+VH}^f$
 - $-\mu_F^f = \mu_{ggF+ttH}^f$
- μ_{V/}μ_f can be measured in the different decay channels and combined:

$$\mu_{V/}\mu_{f} = 1.06^{+0.35}_{-0.27}$$


Parameter	ATLAS+CMS	ATLAS+CMS	ATLAS	CMS
	observed	expected unc.	observed	observed
μ_V/μ_F	$1.06^{+0.35}_{-0.27}$	+0.34 -0.26	$0.91^{+0.41}_{-0.30}$	$1.29^{+0.67}_{-0.46}$
$\mu_F^{\gamma\gamma}$	$1.13^{+0.24}_{-0.21}$	+0.21 -0.19	$1.18^{+0.33}_{-0.29}$	$1.03^{+0.30}_{-0.26}$
μ_F^{ZZ}	$1.29^{+0.29}_{-0.25}$	+0.24 -0.20	$1.54^{+0.44}_{-0.36}$	$1.00^{+0.33}_{-0.27}$
μ_F^{WW}	$1.08^{+0.22}_{-0.19}$	+0.19 -0.17	$1.26^{+0.29}_{-0.25}$	$0.85^{+0.25}_{-0.22}$
$\mu_F^{ au au}$	$1.07^{+0.35}_{-0.28}$	+0.32 -0.27	$1.50^{+0.66}_{-0.49}$	$0.75^{+0.39}_{-0.29}$
$\mu_F^{bar{b}}$	$0.65^{+0.37}_{-0.28}$	+0.45 -0.34	$0.67^{+0.58}_{-0.42}$	$0.64^{+0.54}_{-0.36}$

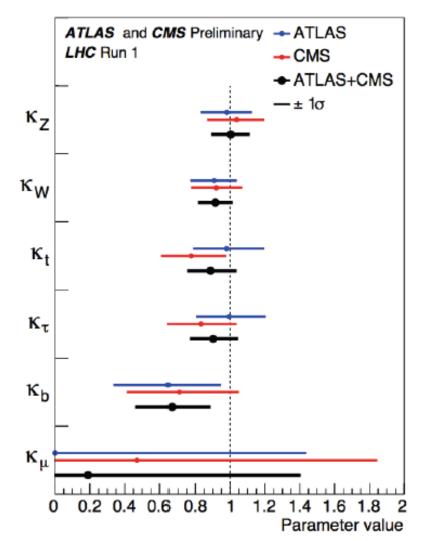
SM p-value 62%

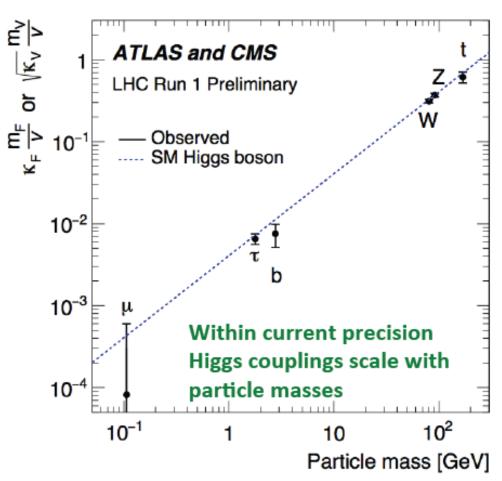
Stronger assumptions on κ coupling modifiers: test for presence of BSM physics in Higgs sector


• All vector and fermion couplings are scaled by κ_V and κ_F

All results in agreement with SM ($\kappa_V = \kappa_f = 1$) within 1σ

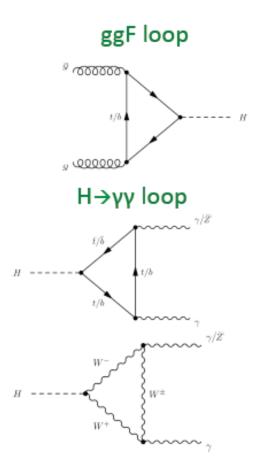
Stronger assumptions on k coupling modifiers

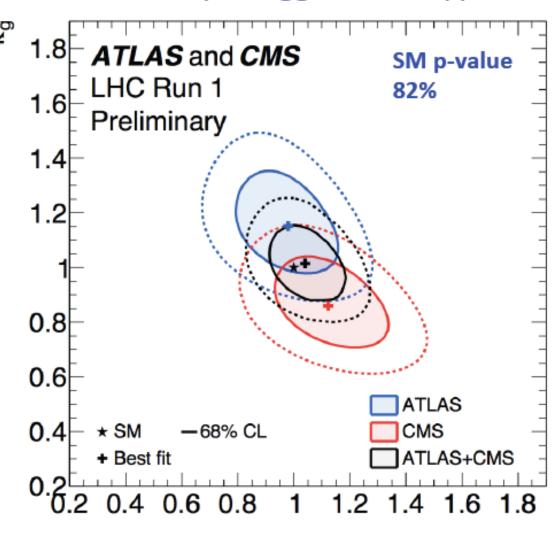

Negative couplings would change sign of interference



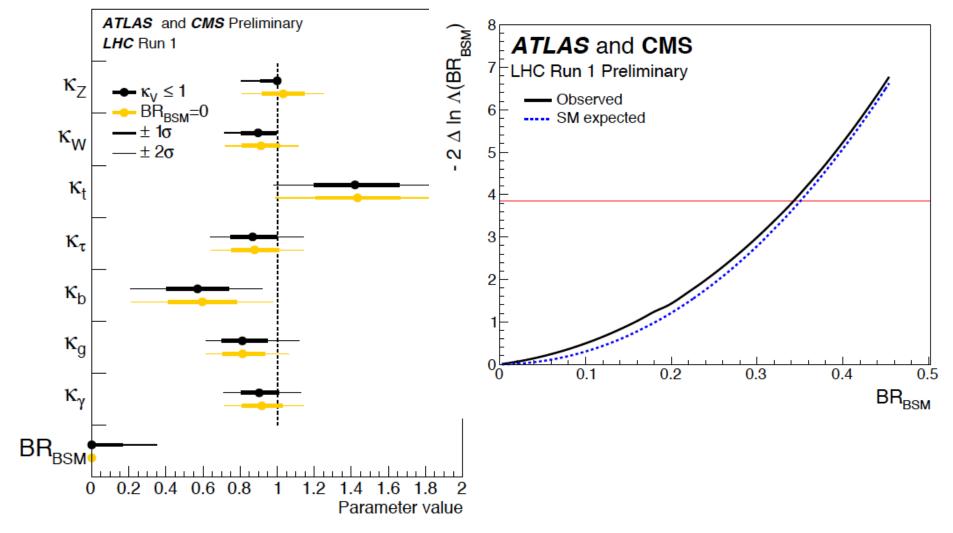
The other two quadrants are symmetric with respect to (0,0),
 all physical quantities only depend on a product of two κ's

Stronger assumptions on κ coupling modifiers: no BSM physics in the loops nor in the decays


• Fitting the 5 main tree level coupling modifiers + κ_{μ} and resolving all the loops.



Stronger assumptions on k coupling modifiers


 Assuming tree level couplings as in the SM and only modifications to the two main loops of ggF and H→γγ

Additional heavy fermions or charged Higgs boson would modify the effective couplings

Stronger assumptions on κ coupling modifiers: BSM physics in the loops only or in both loops and decays

- Here assume either $BR_{BSM} = 0$ or κ_W and $\kappa_Z < 1$
- In the latter case, extract limit on $BR_{BSM} < 34\%$ at 95 CL