Measurements of Higgs Bosons Decaying to Bottom Quarks from Vector Boson Fusion Production with the ATLAS Experiment at \sqrt{s} =13 TeV

ATLAS Paper Draft

HIGG-2019-04 Version 1.0 Target journal: EPJC

Comments are due by: 24 Sept 2020

Supporting internal notes

Measurements of Higgs Boson Decays to b-quarks via Weak Boson Fusion Production: https://cds.cern.ch/record/2703147

Analysis Team

[email: atlas-HIGG-2019-04-editors@cern.ch]

Shraddha Anand, Han Cui, Carolyn Gee, Zhijun Liang, Bo Liu, XinChou Lou, Matthew Henry Klein, Jason Nielsen, Christian Nunez, Liaoshan Shi, Lauren Tompkins, Song-Ming Wang

Editorial Board

[email: atlas-HIGG-2019-04-editorial-board@cern.ch] Kathrin Becker (chair), Antonio de Maria, Carlo Varni Paper Draft: https://cds.cern.ch/record/2730395/

Includes combination with VBF Hbb+y result: <u>https://cds.cern.ch/record/2729658/</u>

Matthew Klein (University of Michigan), Lauren Tompkins (Stanford University) o.b.o. the analysis team

PAM time not set

Motivation

Measure Higgs decays to b-quarks in *complementary production mode* to dominant measurement (VH).

- All-hadronic final state:
 - Signature: 2 b-jets, 2 VBF jets
 - Backgrounds: Non-resonant (NR) bbjj, Zjj
 - VBF topology allows for discrimination against QCD background
 - Previous iteration: <u>HIGG-2016-30</u> (30.6 fb⁻¹)

•
$$\mu_{\text{Hbb}} = 2.7^{+2.2}_{-2.0}$$
; $\mu_{\text{VBFHbb}} = 4.1^{+3.2}_{-2.9}$ (all-hadronic only)

 Opportunity for significant analysis improvements and dramatically increased sensitivity for full Run 2 (126 fb⁻¹) analysis

Lever and

g agggggteeer.

Strategy

In brief: use MVA to divide events into signal regions of varying sensitivity, do simultaneous fit of Z, NR background, Higgs to m_{bb} to extract signal

• Key innovations/improvements:

Neutral PFOs (p_>1.5 GeV) Problem: $Z \rightarrow bb +$ Charged PEOs (p >1.5 GeV) 2 jet MC not Pre reliable in analysis phasespace Solution: Use Embeddina embedded data Z Veutral PFOs (p >1.5 GeV $\rightarrow \mu\mu$ events to constrain $Z \rightarrow bb$ contribution Post

0

Problem: m_{bb} fit has too many free parameters **Solution:** Use an Adversarial NN to decorrelate m_{bb} from classifier \rightarrow use same NR shape in all regions, reducing free params, boosting statistical power of fit

Results

m_{bb} [GeV

This analysis

Results	Inclusive Production	VBF Production
Expected significance	2.85σ	2.77 <i>o</i>
Observed significance	2.71σ	2.63σ
Expected signal strength	$1^{+0.37}_{-0.36}$	$1^{+0.38}_{-0.37}$
Observed signal strength	$0.96^{+0.37}_{-0.36}$	$0.96^{+0.38}_{-0.37}$

Note expected sig increase (VBF production): 0.4σ (2016) $\rightarrow 2.8\sigma$ (Full Run 2)

Combination with VBF Hbb+y

Results	Inclusive Production	VBF Production
Expected significance	3.01 <i>o</i>	2.93 <i>o</i>
Observed significance	3.00σ	2.92σ
Expected signal strength	$1^{+0.35}_{-0.34}$	$1^{+0.36}_{-0.35}$
Observed signal strength	$1.00^{+0.35}_{-0.34}$	$1.00^{+0.36}_{-0.35}$

 3σ Hbb prod, 2.9 σ for VBF

Paper additionally presents results for $p_{\tau}^{H} > 200 \text{ GeV}$, inclusive and fiducial ($|Y_{\mu}| < 2.5$) cross-sections.

160

180

 m_{bb} [GeV]

200