Constraints on Higgs boson properties using $WW^*(\rightarrow ev\mu v)jj$ production in 36.1 fb^{-1} of \sqrt{s} =13TeV pp collisions with the ATLAS detector

ATLAS Paper Draft HIGG-2017-13 Version 1.0 Target journal: Eur. Phys. J. C

Comments are due by: 29th September 2020

Analysis Team

[email: atlas-HIGG-2017-13-editors@cern.ch]

K. Becker, L. Brenner, L. Bruni, C. Burgard, R. Castelijn, D. Duda, P. Ferrari, F. Filthaut, R. Gugel, K. Lohwasser, Y.J. Lu, K. Koeneke, F. Pasquali, D. Shope, E. Sidebo, M. Slawinska, J. Strandberg

Editorial Board

[email: atlas-HIGG-2017-13-editorial-board@cern.ch]

Chris Hays (chair) Andrew Pilkington Zhiqing Zhang paper draft in CDS: https://cds.cern.ch/record/2730830

supporting note: https://cds.cern.ch/record/2291365

Magdalena Sławińska (IFJ PAN) on behalf of the analysis team

Atlas Weekly, 22/09/2020

Motivation

Common final state $WW^*(\rightarrow e\nu\mu\nu)$ *jj*, two Higgs production mechanisms:

• VBF category

- Search for BSM physics in Higgs boson individual couplings to longitudinally and transversely polarised W and Z bosons
- Measurement of $\sigma_{VBF} \cdot Br(H \rightarrow WW^*)$ in Phys. Lett. B789 (2019) 508 in agreement with the SM, while HV_LV_L and HV_TV_T not measured
- Fits to $a_L(=g_{HVLVL}/g_{HVV})$ and $a_T(=g_{HVTVT}/g_{HVV})$ and Pseudo Observables κ_{VV} and ϵ_{VV} , where the other parameter is fixed or profiled

Methodology

Signature: two (forward) jets, two different flavor opposite sign leptons, no b-quarksMain backgrounds: double and single top, Z+2jets, WW and other dibosonsSignal optimisation: several signal categories, separately for each analysis using BDTs

To measure properties of the Higgs production vertex the shape of the distribution of the azimuthal angle between two tagging jets $\Delta \Phi_{ii}$ is used. Additionally, in selected fits, $\sigma \cdot Br(H \rightarrow WW^*)$ information is employed.

Parameter morphing is used to extrapolate from a small set of BSM coupling benchmarks to a large variety of coupling scenarios.

The final results are obtained by applying a maximum likelihood procedure individually to each coupling parameter hypothesis, where the background prediction is only affected by changes to nuisance parameters in the minimization.

The weighted $\Delta \Phi_{ii}$ distribution in the ggf and VBF signal regions, with signal and background yields fixed from the fits.

Results

ggf

- 68% CL interval of tan $\alpha \in [-0.5, 0.5]$, using shape and rate information; shape only fits not yet sensitive
- 68% and 95% CL two-dimensional likelihood contours of the CP-even and CP-odd coupling parameters
- $\mu_{ggF+2i} = 0.7_{-0.7}^{+0.8}$ (syst.) ± 0.4(stat.)

VBF

68% CL intervals using shape and rate information:

- aL ∈ [0.7, 1.0], aT ∈ [0.8, 1.5], (observed) and $aL \in [0.9, 1.1], aT \in [0.5, 1.4]$ (expected)
- $\kappa_{VV} \in [0.7, 1.1]$, $\epsilon_{VV} \in [-0.09, 0.24]$, (observed) and $\kappa_{VV} \in [0.8, 1.1], \epsilon_{VV} \in [-0.7, 0.20], \text{ (expected)}$ 68% CL intervals using only shapes:
- aT ∈ [0.64, 1.78] (observed), aT ∈ [0.40, 1.54] (expected)
- $\varepsilon_{VV} \in [-0.12, 0.55]$ (observed), $\varepsilon_{VV} \in [-0.7, 0.27]$ (expected)

10

