For thousands years of human evolution we were curious about what the Sun is? Answers began to come during recent 50 years, thanks to development of astrophysics and helioseismology, particle and neutrino physics. The latter research field allows studying the Sun's deep interior and achieved enormous progress during last ten years. This period of Sun's studies is marked by the operation of the...
Effective magnetic moment of solar neutrinos is constrained using a 1291.5 days dataset of Borexino Phase-II. The sought-for effect from electromagnetic neutrino interaction is the contribution to the low-energy part of the $\nu-e$ scattering cross section affecting the shapes of the electron recoil spectra. Spectral fit of the solar neutrino data leads to the limit of...
Data on the measurement of the flux of atmospheric muons by a scintillation detector LVD at 3300 m w.e. depth with an average energy of 280 GeV are presented. The results of measuring the seasonal variation of the muon flux over 25 years of observations are discussed.
The SNO+ collaboration has upgraded the SNO detector to pursue a wide range of physics goals, which will be achieved in three distinct phases. In the ongoing water phase, a search for invisible nucleon decays with expected lifetime sensitivities as high as $10^{28}-10^{30}$ years is being conducted. In the upcoming scintillator phase, the increased light yield will lower the energy threshold,...
The IceCube neutrino observatory uses a cubic km of deep South Pole ice instrumented with over 5000 optical sensors to detect Cherenkov light produced by astrophysical and atmospheric neutrinos interacting in the ice. The detector probes neutrino energies from GeV to PeV, propagation distances ranging from a few km to astrophysical scales, and collects high statistics neutrino samples due to...
One of the best ways for investigations of VHE muons spectrum is measuring the spectrum of stochastic energy losses (cascades). IceCube is the world’s unique detector capable of measuring the cascade spectrum in the energy region of tens TeV – one PeV where manifestation of prompt muons is predicted. In events with muon bundles, the longitudinal energy deposit profile reconstructed by means of...
Core-collapse supernovae emit about 99% of their gravitational energy in a burst of neutrinos. This signal carries precious information about the processes inside the collapsing core as well as neutrino properties.
The large liquid scintillator detectors used by the NOvA experiment provide a possibility to detect such a signal. A dedicated trigger system was developed to perform a search for...
The Earth thermal flux value lays in wide region from 50 up to 250 TW according to number of estimations. Upper limit could be achieved only if potassium abundance in the Earth exceeds 2%. In Borexino data the valley between beryllium neutrinos and 11C spectrum is filled with betas from 210Bi. But it also contains CNO neutrinos. CNO cycle in the Sun could be depressed according to last...
DANSS is a one cubic meter highly segmented solid scintillator detector. It consists of 2500 scintillator strips, covered with gadolinium loaded reflective coating and read out with SiPMs via wavelength shifting fibers. DANSS is placed under a 3 GW industrial reactor at the Kalinin NPP (Russia) on a movable platform. The distance from the reactor core center is varied from 10.7 m to 12.7 m...
Daya Bay was the first experiment to unambiguously measure a non-zero value of the $\theta_{13}$ mixing angle and the first reactor experiment to measure the $\Delta m^2_{32}$ mass splitting. The experiment includes eight identically designed detectors and six nuclear reactors at baselines ranging from 0.5 km to 1.6 km. A data set of nearly 4 million events has been collected over 1958 days...
T2K is a long-baseline neutrino oscillation experiment based in Japan. A muon neutrino (or antineutrino) beam is produced at JPARC and sent 295 km to the Super-Kamiokande detector where neutrino oscillation is studied via muon neutrino disappearance and electron neutrino appearance channels. Such studies have demonstrated muon neutrino to electron neutrino oscillation and provide precision...
A proposal for an experiment on a 2-zone gallium target of a solar Gallium-germanium neutrino telescope in the Baksan neutrino Observatory of the INR RAS with a source of 65Zn for short baseline neutrino oscillations search is considered. The possibilities of determining the parameters of oscillations, the necessary characteristics of the neutrino source, the possibility of its production and...
The Cryogenic Underground Observatory for Rare Events (CUORE) is the first bolometric experiment searching for neutrinoless double beta decay (0νββ) that has been able to reach the one-ton scale. The detector consists of an array of 988 TeO2 crystals arranged in a compact cylindrical structure of 19 towers. The construction of the experiment was completed in August 2016 with the installation...
A.S. Barabash
NRC “Kurchatov Institute”, Institute of Theoretical and Experimental
Physics, B. Cheremushkinskaya 25, 117218 Moscow, Russia
This report reviews of modern double beta decay experiments. Results of the most sensitive current experiments are discussed. The main attention is paid to KamLAND-Zen, EXO, GERDA-II, MAJORANA-DEMONSTRATOR, CUORE and CUPID-0...
Neutrinoless double beta decay is a hypothetical nuclear transition which if observed will allow to establish Majorana nature of neutrino, determine the absolute neutrino mass and the neutrino-mass hierarchy, to verify the lepton number violation and possible contribution of right-handed admixture to weak interaction, help to test leptogenesis, existence of Nambu-Goldstone bosons (majorons)...
During several years at the Baksan Neutrino Observatory INR RAS is undergoing the experiment for searching of 2K (2$\nu$)-capture in $^{124}$Xe. This isotope has several advantages: 1) it has the largest kinetic energy of transition Q – 2.866 MeV, among candidates of nuclei for which predicted the existence of ECEC; 2) since xenon is the noble gas, then it could be easily use as a system...
The KArlsruhe TRItium Neutrino (KATRIN) experiment aims to make a model-independent determination of the active electron antineutrino mass with an upper limit of 0.2 eV/c2 from the analysis of Tritium beta-spectrum shape near the endpoint. Experimental set-up is fully assembled and undergoes multiple tests. Small amount of Tritium molecules were injected at June 2018 and first spectra were...
A review of experiments aimed on detection and study of the recently discovered process of coherent elastic neutrino-nucleus scattering (CEvNS) is presented.
The goal of the COHERENT collaboration is to observe coherent elastic neutrino-nucleus scattering (CEvNS) using different target nuclei and detector technologies. The talk focuses on the ongoing experimental effort and plans following the first observation.